

Révisions BTS → Calcul intégral Mathématiques

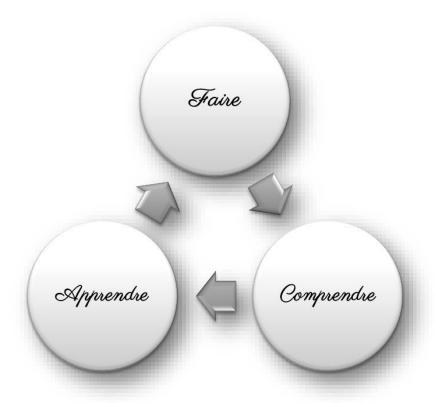


Table des matières

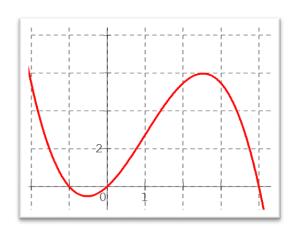
Enoncé du sujet	2
Exercice 1	
Exercice 2.	
Exercice 3.	2
Exercice 4.	2
Exercice 5	3
Exercice 6.	3
Exercice 7.	3
Correction du sujet	4
Correction de l'exercice 1	
Correction de l'exercice 2	4
Correction de l'exercice 3	5
Correction de l'exercice 4	6
Correction de l'exercice 5.	
Correction de l'exercice 6	8
Correction de l'exercice 7	8

BTS → Révisions intégrales Mathématiques - Calculatrice autorisée

Enoncé du sujet

Exercice 1.

Primitive F	Fonction f	Dérivée f'
	$15x^2-8x+7$	
	$7e^{2x-1}-x$	
$\sin\left(\pi x + \frac{\pi}{3}\right)$		
	$5\cos(1-3x)$	
		$\cos(3+2x)$



Exercice 2.

▶ 1. Le fonction f est représentée ci-contre.

Quelle est le bon encadrement de l'intégrale I

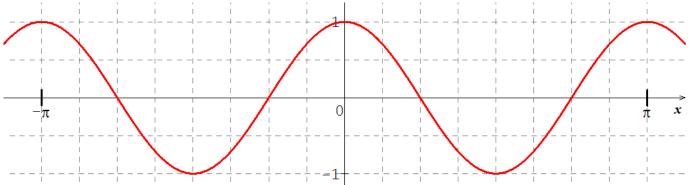
$$= \int_{1}^{3} f(x)dx ?$$
① $3 \le I < 6$ ② $6 \le I < 9$

- ③ $9 \le I < 12$ ④ $12 \le I < 18$ ⑤ $18 \le I \le 22$
- ▶ 2. Calculez en détaillant $J = \int_0^1 (6x^2 4x + 1) dx$

Exercice 3.

Dans le repère ci-dessous, la fonction représentée est $f(x) = \cos(2x)$.

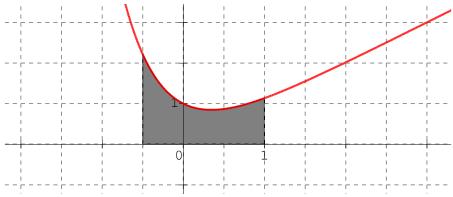
- ▶ 1. Hachurer l'aire représentée par l'intégrale $\int_{-\infty}^{\frac{n}{2}} \cos(2x) dx$
- ▶ 2. Conjecturer la valeur de cette intégrale puis démontrer votre conjecture.



Exercice 4.

▶ 1. Dans le repère ci-dessous, la fonction représentée est $g(x) = x + e^{-2x}$.

Ecrire l'intégrale représentant l'aire hachurée ci-dessous puis calculer cette intégrale.



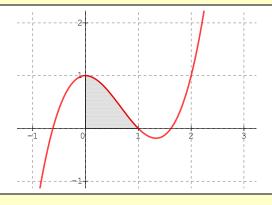
▶ 2. Déterminer l'intégrale de la fonction $h(x) = \frac{2x}{x^2 + 1}$ entre les bornes 0 et 2.

Exercice 5.

Dans le repère orthonormé d'unité 1 cm ci-dessous, on a tracé la courbe de la fonction

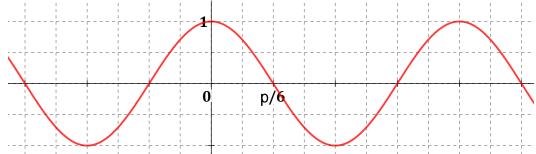
$$f(x) = x^3 - 2x^2 + 1$$
 définie sur \mathbb{R} .

Déterminer l'aire de la surface hachurée.



Exercice 6.

Dans le repère orthonormé ci-contre, on a tracé la courbe de la fonction, définie sur \mathbb{R} , $f(x) = \cos(3x)$.



Soit
$$\mathcal{A} = \int_0^{\frac{\pi}{3}} \cos(3x) dx$$
.

Hachurer, dans le repère ci-contre, le domaine correspondant à l'intégrale \mathcal{A} . Calculer l'intégrale \mathcal{A} .

Exercice 7.

Calculer la valeur moyenne des fonctions suivantes :

► 1.
$$f(x) = e^{1-4x} + e^x \text{ sur } [-1; 3]$$

► 2.
$$g(x) = \sin(2x + \pi) \operatorname{sur}\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$$

► 3.
$$h(x) = \frac{3x^2}{x^3 + 1}$$
 sur [0; 3].

BTS → Révisions intégrales Mathématiques

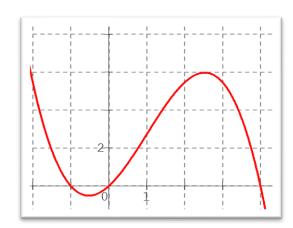
Correction du sujet

Correction de l'exercice 1.

Primitive F	Fonction f	Dérivée f'
	$15x^2-8x+7$	
	$7e^{2x-1}-x$	
$\sin\left(\pi x + \frac{\pi}{3}\right)$		
	$5\cos(1-3x)$	
		$\cos(3+2x)$

Primitive F	Fonction f	Dérivée <i>f'</i>
$5x^3-4x^2+7x$	$15x^2 - 8x + 7$	30x - 8
$\frac{7}{2}e^{2x-1}-\frac{x^2}{2}$	$7e^{2x-1}-x$	$14 e^{2x-1} - 1$
$\sin\left(\pi x + \frac{\pi}{3}\right)$	$\pi\cos\left(\pi x + \frac{\pi}{3}\right)$	$-\pi^2\sin\left(\pi x + \frac{\pi}{3}\right)$
$\frac{-5}{3}\sin(1-3x)$	$5\cos(1-3x)$	$15\sin(1-3x)$
$\frac{-1}{4}\cos(3+2x)$	$\frac{1}{2}\sin(3+2x)$	$\cos(3+2x)$

Correction de l'exercice 2.



ightharpoonup 1. Le fonction f est représentée ci-contre.

Quelle est le bon encadrement de l'intégrale I

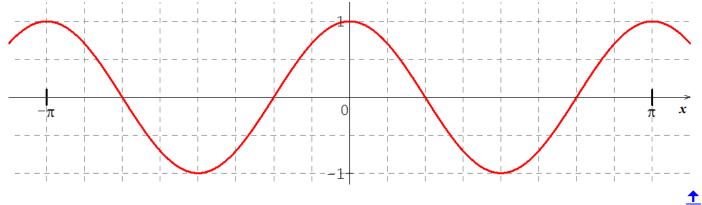
$$= \int_{1}^{3} f(x)dx ?$$
① $3 \le I < 6$ ② $6 \le I < 9$

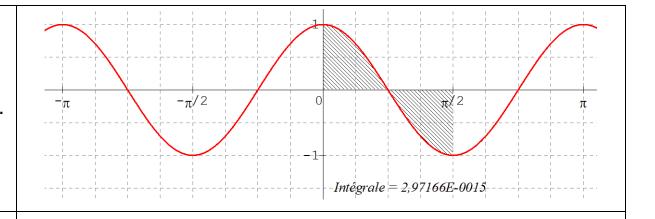
- ③ $9 \le I < 12$ ④ $12 \le I < 18$ ⑤ $18 \le I \le 22$
- ► 2. Calculez en détaillant $J = \int_0^1 (6x^2 4x + 1) dx$

Correction de l'exercice 3.

Dans le repère ci-dessous, la fonction représentée est $f(x) = \cos(2x)$.

- ▶ 1. Hachurer l'aire représentée par l'intégrale $\int_0^{\frac{\pi}{2}} \cos(2x) dx$
- ▶2. Conjecturer la valeur de cette intégrale puis démontrer votre conjecture.





Exercice 3.

Je conjecture que l'intégrale $\int_{0}^{\frac{\pi}{2}} \cos(2x) dx$ sera égale à 0.

$$\int_0^{\frac{\pi}{2}} \cos(2x) \, dx = \left[\frac{1}{2} \sin(2x) \right]_0^{\frac{\pi}{2}}$$

$$\int_0^{\frac{\pi}{2}} \cos(2x) \, dx = \frac{1}{2} \sin\left(2 \times \frac{\pi}{2}\right) - \frac{1}{2} \sin(2 \times 0)$$

$$\int_0^{\frac{\pi}{2}} \cos(2x) \, dx = \frac{1}{2} \sin(\pi) - \frac{1}{2} \sin(0)$$

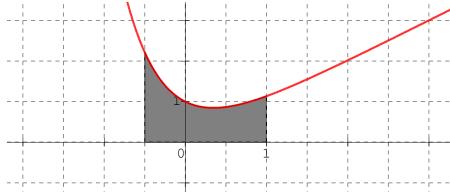
$$\int_0^{\frac{\pi}{2}} \cos(2x) \, dx = \mathbf{0} - \mathbf{0} = \mathbf{0}$$

$$\int_0^{\pi} \cos(2x) \, dx = \frac{1}{2} \sin(\pi) - \frac{1}{2} \cos(2x) \, dx = 0 - 0 = 0$$

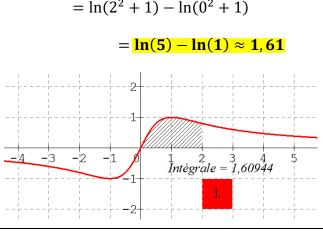
On pourra remarquer que le logiciel utilisé pour tracer la courbe ci-dessus ne trouve pas 0 pour l'intégrale mais un nombre très « petit » 2,97166 \times 10⁻¹⁵, l'erreur est due aux arrondis.

Correction de l'exercice 4.

▶1. Dans le repère ci-dessous, la fonction représentée est $g(x) = x + e^{-2x}$. Ecrire l'intégrale représentant l'aire hachurée ci-dessous puis calculer cette intégrale.



▶ 2. Déterminer l'intégrale de la fonction $h(x) = \frac{2x}{x^2 + 1}$ entre les bornes 0 et 2.

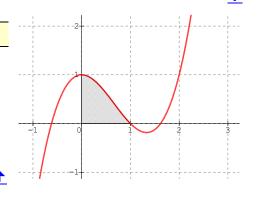


Correction de l'exercice 5.

Dans le repère orthonormé d'unité 1 cm ci-dessous, on a tracé la courbe de la fonction

$$f(x) = x^3 - 2x^2 + 1 \text{ définie sur } \mathbb{R}.$$

Déterminer l'aire de la surface hachurée.



$$\int_{0}^{1} f(x)dx = \int_{0}^{1} (x^{3} - 2x^{2} + 1)dx$$

$$= \left[\frac{x^{4}}{4} - \frac{2x^{3}}{3} + x\right]_{0}^{1}$$

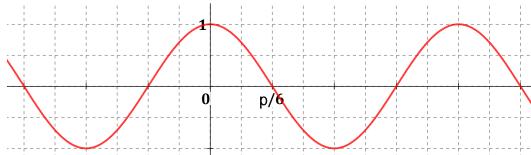
$$= \frac{1^{4}}{4} - \frac{2 \times 1^{3}}{3} + 1 - 0$$

$$= \frac{1}{4} - \frac{2}{3} + 1$$

$$= \frac{7}{12}$$

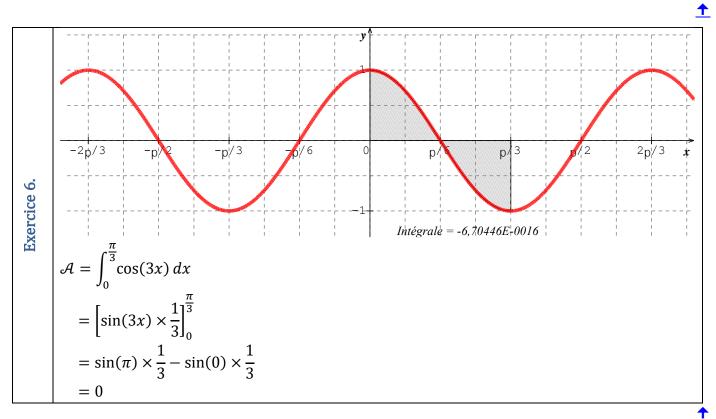
Correction de l'exercice 6.

Dans le repère orthonormé ci-contre, on a tracé la courbe de la fonction, définie sur \mathbb{R} , $f(x) = \cos(3x)$.



Soit
$$\mathcal{A} = \int_0^{\frac{\pi}{3}} \cos(3x) \, dx$$
.

Hachurer, dans le repère ci-contre, le domaine correspondant à l'intégrale \mathcal{A} . Calculer l'intégrale \mathcal{A} .



Calculer la valeur moyenne des fonctions suivantes :

► 1.
$$f(x) = e^{1-4x} + e^x \text{ sur } [-1; 3]$$

$$\triangleright 2. g(x) = \sin(2x + \pi) \operatorname{sur}\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$$

► 3.
$$h(x) = \frac{3x^2}{x^3 + 1}$$
 sur [0; 3].



$$V_m(h) = \frac{1}{3 - 0} \int_0^3 \frac{3x^2}{x^3 + 1} dx$$

$$V_m(h) = \frac{1}{3} [\ln(x^3 + 1)]_0^3$$

$$V_m(h) = \frac{1}{3} (\ln(3^3 + 1) - \ln(0^3 + 1))$$

$$V_m(h) = \frac{1}{3} (\ln(28) - \ln(1))$$

$$V_m(h) = \frac{1}{3} \ln(28) \approx 1{,}111$$