

Mardi 10 décembre 2024 BTS → Contrôle n° 2 Mathématiques

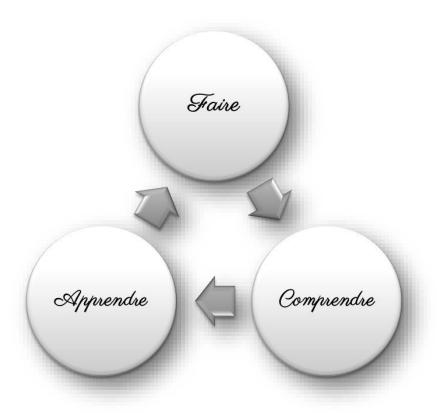


Table des matières

oncé du sujet A	2
ercice 1. (6 points)	2
ercice 2. (5 points)	
ercice 3. (9 points)	2
oncé du sujet B	
ercice 1. (6 points)	
ercice 2. (5 points)	
ercice 3. (9 points)	3
rrection du sujet A	4
rrection de l'exercice 1. (6 points)	4
rrection de l'exercice 2. (5 points)	
rrection de l'exercice 3. (9 points)	5
rrection du sujet B	7
rrection de l'exercice 1. (6 points)	7
rrection de l'exercice 2. (5 points)	8
rrection de l'exercice 3. (9 points)	

BTS → Contrôle n° 2

Mathématiques - Calculatrice autorisée

Enoncé du sujet A

Exercice 1. (6 points)

Soit la fonction définie sur]0; $+\infty$ [par $f(x) = -2x + 1 + 10 \ln(x)$

- \Box Calculer f'(x)
- **2** Etudier le signe de f'(x).

Exercice 2. (5 points)

$$-12\pi$$

$$\frac{3\pi}{4}$$

$$\frac{-2\pi}{3}$$

$$\frac{4295\pi}{6}$$

2 Déterminer les valeurs exactes

$$\cos\left(\frac{\pi}{3}\right) =$$

$$\sin(3\pi) =$$

 \Box Déterminer le ou les angles x tels que :

$$\sin(x) = \frac{-1}{2}$$

$$\cos(x) = \frac{\sqrt{2}}{2}$$

0,5

0,5

- Ò,5

Exercice 3. (9 points)

La température de refroidissement du pain à la sortie du four dépend du type de pain et de la température ambiante supposée constante de la pièce dans laquelle il est entreposé. Pour $t \ge 0$, on désigne par f(t) la température du pain au bout d'un temps t après sa sortie du four. On admet que

- $f(t) = 152 e^{-6t} + 28$ où la durée t est exprimée en heures et la température f(t) est exprimée en degrés Celsius.
- ▶1 a) Quelle est la température du pain à la sortie du four ?
- b) Déterminer la température du pain 30 minutes après la sortie du four. *On donnera une valeur approchée au degré près.*
- ▶2 a) Calculer la dérivée f'(t) et étudier son signe pour $t \ge 0$.
 - b) Dresser le tableau de variations de la fonction f.
- ▶3 a) Résoudre l'équation 152 $e^{-6t} + 28 = 62$.
- b) Le boulanger sort une fournée de pains du four. Au bout de quelle durée le pain sera à une température de 62°C ? On donnera une valeur approchée à une minute près.

BTS → Contrôle n° 2

Mathématiques - Calculatrice autorisée

Enoncé du sujet B

Exercice 1. (6 points)

Soit la fonction définie sur]0; $+\infty$ [par $f(x) = -3x + 1 + 21 \ln(x)$

- \Box Calculer f'(x)
- **2** Etudier le signe de f'(x).
- \blacksquare En déduire le tableau de variations de la fonction f.

Exercice 2. (5 points)

1 Placer les angles sur le cercle trigonométrique

$$-12\pi$$
 $\frac{5\pi}{2}$

$$\frac{\pi}{2}$$

$$\frac{-5\pi}{3}$$

$$\frac{9425\pi}{6}$$

Déterminer les valeurs exactes

$$\sin\left(\frac{\pi}{6}\right) =$$

$$cos(4\pi) =$$

$$\cos(x) = \frac{-1}{2}$$

0,5

0,5

- Ò,5

Exercice 3. (9 points)

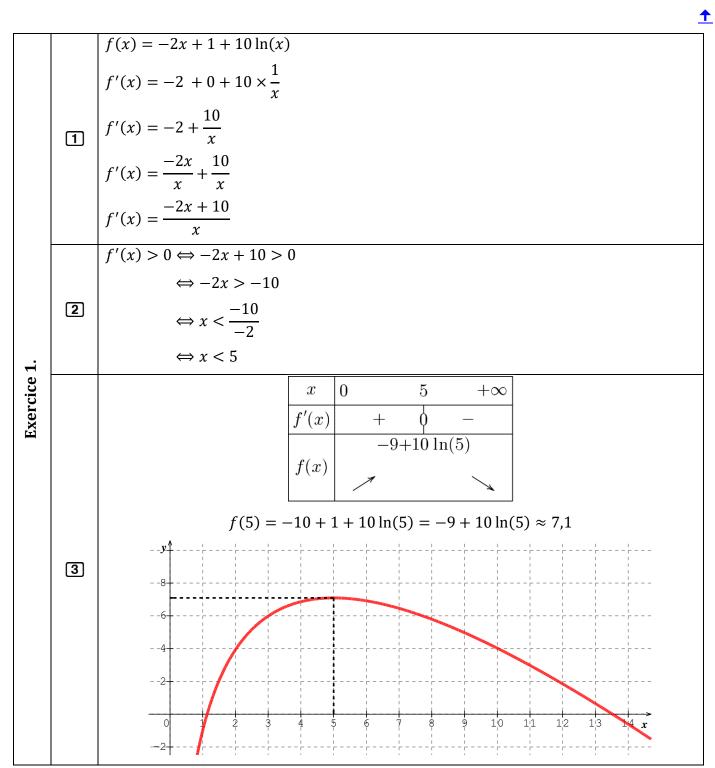
La température de refroidissement du pain à la sortie du four dépend du type de pain et de la température ambiante supposée constante de la pièce dans laquelle il est entreposé. Pour $t \ge 0$, on désigne par f(t) la température du pain au bout d'un temps t après sa sortie du four. On admet que

- $f(t) = 148 e^{-5t} + 32$ où la durée t est exprimée en heures et la température f(t) est exprimée en degrés Celsius.
- ▶1 a) Quelle est la température du pain à la sortie du four ?
- b) Déterminer la température du pain 30 minutes après la sortie du four. *On donnera une valeur approchée au degré près.*
- ▶2 a) Calculer la dérivée f'(t) et étudier son signe pour $t \ge 0$.
 - b) Dresser le tableau de variations de la fonction f.
- ▶3 a) Résoudre l'équation $148 e^{-5t} + 32 = 86$.
- b) Le boulanger sort une fournée de pains du four. Au bout de quelle durée le pain sera à une température de 86°C ? On donnera une valeur approchée à une minute près.

Correction de l'exercice 1. (6 points)

Soit la fonction définie sur]0; $+\infty$ [par $f(x) = -2x + 1 + 10 \ln(x)$

- lacktriangledown Calculer f'(x)
- **2** Etudier le signe de f'(x).



Correction de l'exercice 2. (5 points)

Placer les angles sur le cercle trigonométrique

$$-12\pi$$
 $\frac{-\pi}{2}$

$$\frac{3\pi}{4}$$

$$\frac{-2\tau}{3}$$

$$\frac{4295\pi}{6}$$

2 Déterminer les valeurs exactes

$$\cos\left(\frac{\pi}{3}\right) =$$

$$sin(3\pi) =$$

$$\sin(x) = \frac{-1}{2}$$

$$\cos(x) = \frac{\sqrt{2}}{2}$$

1 Placer les angles sur le cercle trigonométrique

$$-12\pi$$

$$\frac{-\pi}{2}$$

$$\frac{3\pi}{4}$$

$$\frac{-2\pi}{3}$$

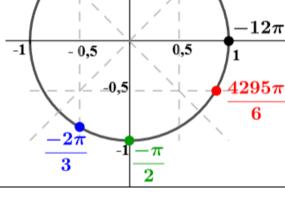
$$\frac{4295\pi}{6}$$

2 Déterminer les valeurs exactes

$$\cos\left(\frac{\pi}{3}\right) = 0.5$$

$$\sin(3\pi)=0$$

$$\sin(x) = \frac{-1}{2} \text{ donc } x = \frac{-\pi}{6} \text{ ou } \frac{-5\pi}{6}$$



$$cos(x) = \frac{\sqrt{2}}{2}$$
 donc $x = \frac{\pi}{4}$ ou $\frac{-\pi}{4}$

Correction de l'exercice 3. (9 points)

La température de refroidissement du pain à la sortie du four dépend du type de pain et de la température ambiante supposée constante de la pièce dans laquelle il est entreposé. Pour $t \ge 0$, on désigne par f(t) la température du pain au bout d'un temps t après sa sortie du four. On admet que

 $f(t) = 152 e^{-6t} + 28$ où la durée t est exprimée en heures et la température f(t) est exprimée en degrés Celsius.

- ▶1 a) Quelle est la température du pain à la sortie du four?
- b) Déterminer la température du pain 30 minutes après la sortie du four. *On donnera une valeur approchée au degré près.*
- ▶2 a) Calculer la dérivée f'(t) et étudier son signe pour $t \ge 0$.
 - b) Dresser le tableau de variations de la fonction f.
- ▶3 a) Résoudre l'équation 152 $e^{-6t} + 28 = 62$.

b) Le boulanger sort une fournée de pains du four. Au bout de quelle durée le pain sera à une température de 62°C ? *On donnera une valeur approchée à une minute près.*

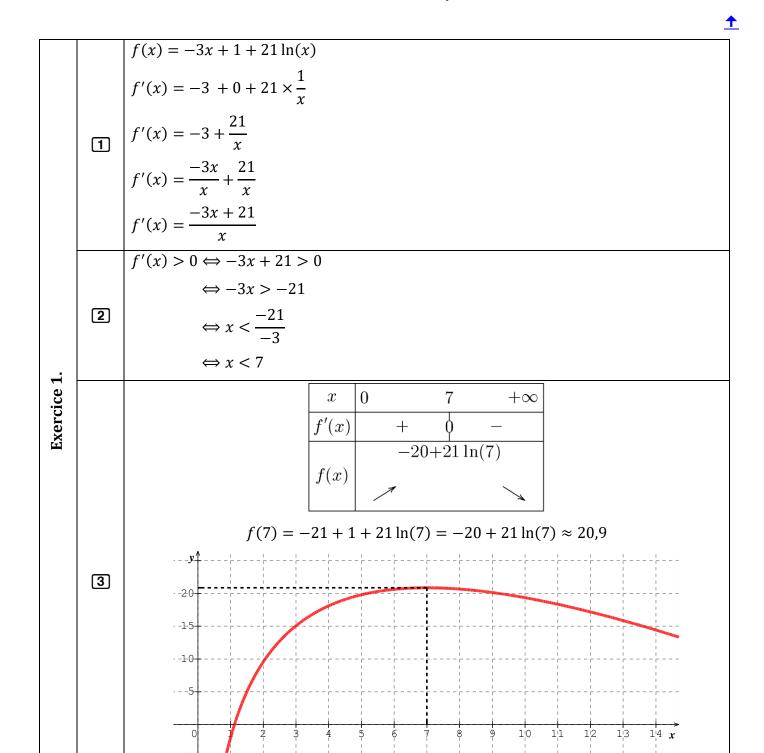
4	
	L

		<u>-</u>
		La sortie du four correspond à $t = 0$:
	1	$f(0) = 152 e^{-6 \times 0} + 28 = 180$
		A la sortie du four, le pain est à 180°C.
		30 minutes correspondent à $t = 0.5$:
		$f(0,5) = 152 e^{-6 \times 0,5} + 28 \approx 36$
		Une demi-heure après la sortie du four, le pain est à 36°C environ.
		$f(t) = 152 e^{-6t} + 28$
		$f'(t) = 152 e^{-6t} \times (-6) + 0$
		$f'(t) = -912 e^{-6t}$
	2	$-912 < 0$ et $e^{-6t} > 0$ donc $f'(t) < 0$ pour tout $t \ge 0$
		$t 0 +\infty$
Exercice 3.		f'(t) -
		f(t) 180
EX		
		$152 e^{-6t} + 28 = 62$
		$152 e^{-6t} = 62 - 28$
		$152 \times e^{-6t} = 34$
		$e^{-6t} = \frac{34}{450}$
		152 17
		$ \begin{array}{rcl} 152 \times e^{-6t} & = & 34 \\ e^{-6t} & = & \frac{34}{152} \\ e^{-6t} & = & \frac{17}{76} \end{array} $
	3	$-6 t = \ln\left(\frac{17}{76}\right)$
		$-6 t = \ln\left(\frac{17}{76}\right)$ $-6 \times t = \ln\left(\frac{17}{76}\right)$
		$t = \frac{\ln\left(\frac{17}{76}\right)}{-6}$
		U U U U U U U U U U U U U U U U U U U
		D'après la question précédente, le pain sera à 62°C au bout de $t \approx 0,249586$ heure
		soit $t \approx 14,975$ minutes c'est à dire 15 minutes environ.

Correction de l'exercice 1. (6 points)

Soit la fonction définie sur]0; $+\infty$ [par $f(x) = -3x + 1 + 21 \ln(x)$

- \bigcirc Calculer f'(x)
- **2** Etudier le signe de f'(x).



 $\cdot 12\pi$

Correction de l'exercice 2. (5 points)

Placer les angles sur le cercle trigonométrique

$$-12\pi$$

$$\frac{5\pi}{2}$$

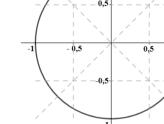
$$\frac{-3\pi}{4}$$

$$\frac{-5\pi}{3}$$

$$\frac{9425\pi}{6}$$

$$\sin\left(\frac{\pi}{6}\right) =$$

$$cos(4\pi) =$$



Déterminer le ou les angles x tels que :

$$\sin(x) = \frac{\sqrt{2}}{2}$$

$$\cos(x) = \frac{-1}{2}$$

 9425π

6

Placer les angles sur le cercle trigonométrique

$$-12\pi$$

$$\frac{5\pi}{2}$$

$$\frac{-3\pi}{4}$$

$$\frac{-5\pi}{3}$$

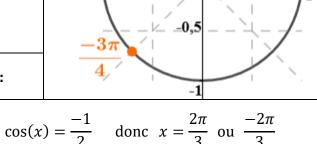
$$\frac{9425\pi}{6}$$

2 Déterminer les valeurs exactes

$$\sin\left(\frac{\pi}{6}\right) = 0.5$$

$$\cos(4\pi)=1$$

$$\sin(x) = \frac{\sqrt{2}}{2}$$
 donc $x = \frac{\pi}{4}$ ou $\frac{3\pi}{4}$



La température de refroidissement du pain à la sortie du four dépend du type de pain et de la température ambiante supposée constante de la pièce dans laquelle il est entreposé. Pour $t \ge 0$, on désigne par f(t) la température du pain au bout d'un temps t après sa sortie du four. On admet que

Correction de l'exercice 3. (9 points)

 $f(t) = 148 e^{-5t} + 32$ où la durée t est exprimée en heures et la température f(t) est exprimée en degrés Celsius.

- ▶1 a) Quelle est la température du pain à la sortie du four ?
- b) Déterminer la température du pain 30 minutes après la sortie du four. *On donnera une valeur approchée au degré près.*
- ▶2 a) Calculer la dérivée f'(t) et étudier son signe pour $t \ge 0$.
 - b) Dresser le tableau de variations de la fonction f.

b) Le boulanger sort une fournée de pains du four. Au bout de quelle durée le pain sera à une température de 86°C ? *On donnera une valeur approchée à une minute près.*

<u></u>

		La sortie du four correspond à $t = 0$:
	1	$f(0) = 148 e^{-5 \times 0} + 32 = 180$
		A la sortie du four, le pain est à 180°C.
		30 minutes correspondent à $t = 0.5$:
		$f(0,5) = 148 e^{-5 \times 0.5} + 32 \approx 44$
		Une demi-heure après la sortie du four, le pain est à 44°C environ.
		$f(t) = 148 e^{-5t} + 32$
		$f'(t) = 148 e^{-5t} \times (-5) + 0$
		$f'(t) = -740 e^{-5t}$
	2	$-740 < 0$ et $e^{-5t} > 0$ donc $f'(t) < 0$ pour tout $t \ge 0$
ce 3.		$t 0 +\infty$
		f'(t) –
Exercice 3.		f(t) 180
		$148 e^{-5t} + 32 = 86$
		$148 e^{-5t} = 86 - 32$
		$148 \times e^{-5t} = 54$
		$e^{-5t} = \frac{54}{148}$ $e^{-5t} = \frac{27}{74}$
		$e^{-5t} = \frac{-7}{74}$
	3	$-5 t = \ln \left(\frac{27}{74}\right)$
		$-5 t = \ln\left(\frac{27}{74}\right)$ $-5 \times t = \ln\left(\frac{27}{74}\right)$
		$t = \frac{\ln\left(\frac{27}{74}\right)}{-5}$
		D'après la question précédente, le pain sera à 86°C au bout de $t \approx 0,2016456$ heure
		soit $t \approx 12,0987$ minutes c'est à dire 12 minutes environ.