

Soutien n°2 : Loi exponentielle BTS

Rappels sur la loi exponentielle :

 λ est un nombre réel strictement positif.

Une variable aléatoire suit une loi exponentielle de paramètre λ lorsque sa densité de probabilité est définie sur $[0; +\infty[$ par la fonction $f(x) = \lambda e^{-\lambda x}$.

L'espérance d'une variable aléatoire X qui suit la loi exponentielle de paramètre λ est

$$E(X) = \frac{1}{\lambda}$$

Exercice n°1. PISTE BLEUE

▶1. Le temps d	'attente en minute à	un péage est une	e variable aléato	oire qui suit l	a loi exponer	ıtielle de
paramètre $\lambda =$	0,16 (exprimé en mi	n ⁻¹). En moyenne	e une personne	attend à ce p	oéage :	

- a) $6 \min 25s$ b) $6 \min 15s$ c) $16 \min$ d) $25 \min$
- \blacktriangleright 2. La durée de vie en heures d'un certain type d'ampoules électriques est modélisée par une variable aléatoire qui suit la loi exponentielle de paramètre λ . En moyenne, la durée de vie d'une ampoule est 8 000 h. Le paramètre λ , exprimé en h^{-1} , est égal à :
 - a) 0,001 25 b) 0,008 c) 0,000 125 d) 0,000 8
- ▶ 3. La durée de vie, en heures, d'un composant électronique est une variable aléatoire T qui suit la loi exponentielle de paramètre $\lambda = 5.5 \times 10^{-4}$. La probabilité, arrondie à 0,01 près, qu'un composant électronique pris au hasard ait une durée de vie inférieure à 1 000 heures est :
 - a) 0,001 b) 0,00055 c) 0,35 d) 0,42
- ▶ 4. On observe la durée de fonctionnement, exprimée en années, d'un appareil électroménager jusqu'à ce que survienne la première panne. Cette durée de fonctionnement est modélisée par une variable aléatoire X suivant la loi exponentielle de paramètre $\lambda = 0,2$. La probabilité que le moteur fonctionne sans panne pendant plus de 8 ans est au centième près :

a) 0,18 b) 0,2 c) 0,71 d) 0,8

Exercice n°2. PISTE BLEUE

Dans cet exercice, on s'intéresse à deux types A et B de téléviseurs à écran plat.

- ▶ 1. La durée de fonctionnement, exprimée en heures, d'un téléviseur du type A, avant que survienne la première panne, est modélisée par une variable aléatoire X suivant la loi exponentielle de paramètre $\lambda = 2 \times 10^{-5}$.
- a. Calculer la probabilité que la première panne survienne avant la 32 $000^{\rm e}$ heure de fonctionnement.
- b. On s'intéresse à un téléviseur de type A fonctionnant chaque jour pendant 4 heures. Calculer la probabilité que la première panne d'écran ne survienne pas avant 10 ans.
- c. Calculer la probabilité que la première panne survienne après 10 000 heures et avant 40 000 heures de fonctionnement.
- d. Calculer l'espérance mathématique de la variable aléatoire *X* et en donner une interprétation.
- ▶ 2. La durée de fonctionnement avant la première panne d'un téléviseur de type B est modélisée par une variable aléatoire Y suivant la loi exponentielle de paramètre λ' . Une étude statistique a permis d'évaluer $P(Y \le 32\,000) = 0.8$. Calculer la valeur arrondie à 10^{-5} de λ' .