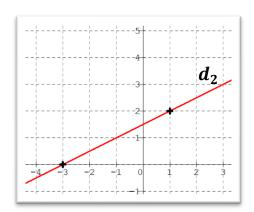
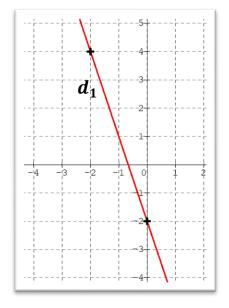


Lundi 18 décembre 2023 Seconde → Contrôle n° 3

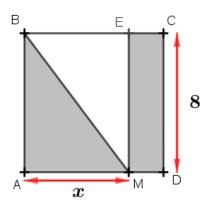

Table des matières


Enoncé du sujet	<u>A</u>	2
Exercice 1.	(4 points)	2
Exercice 2.	(5 points)	
Exercice 3.	(7 points)	2
Exercice 4.	(4 points)	2
Enoncé du sujet	B	
Exercice 1.	(4 points)	
Exercice 2.	(5 points)	
Exercice 3.	(7 points)	
Exercice 4.	(4 points)	
Correction du su	ujet A	4
Correction de l'e	exercice 1. (4 points)	4
Correction de l'e	exercice 2. (5 points)	5
Correction de l'e	exercice 3. (7 points)	5
Correction de l'e	exercice 4. (4 points)	7
Correction du su	<u>ujet B</u>	
Correction de l'e	exercice 1. (4 points)	8
Correction de l'e	exercice 2. (5 points)	9
Correction de l'e	exercice 3. (7 points)	9
Correction de l'e	exercice 4. (4 points)	1

Enoncé du sujet A

Exercice 1. (4 points)

Déterminer l'équation de chaque droite ci-dessous.



Exercice 2. (5 points)

Sur la figure ci-contre, ABCD est un carré de côté 8 cm. Le point M est un point mobile du segment [AD], on pose que AM = x.

- ▶ 1a) Dans quel intervalle varie x?
- b) Ecrire, en fonction de x, l'aire du triangle ABM.
- c) Ecrire, en fonction de x, l'aire du rectangle MDCE.
- ▶ 2. Pour quelle(s) valeur(s) de x, l'aire du triangle AMB estelle strictement supérieure à l'aire du rectangle MDCE?

Exercice 3. (7 points)

▶ 1. Résoudre les inéquations ci-dessous. On représentera les solutions sur une droite graduée puis on présentera les solutions sous forme d'un intervalle.

a)
$$4 - 7x \le 5x - 2$$

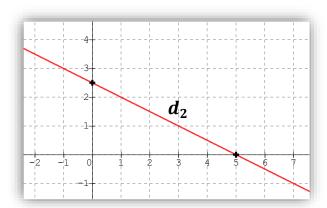
b)
$$1 - 3(5x - 6) > 5x - 1$$

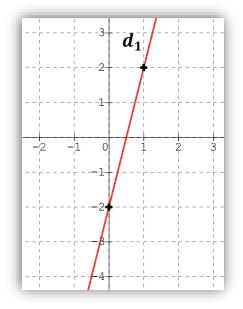
- ▶2. Posons $I = [-2; 5[, J =]-\infty; -2[$ et $K =]3; +\infty[$.
- a) Déterminer $I \cup K$ et $I \cap K$.
- b) Déterminer $I \cap J$.

Exercice 4. (4 points)

▶1. Résoudre l'inéquation :

$$\frac{220+x}{357-x} \ge \frac{13}{12}$$

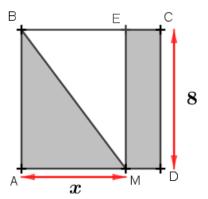

▶ 2. Actuellement, à l'Assemblée Nationale, il y a 220 députées femmes et 357 députés hommes. Le ratio 220:357 est très éloigné du ratio femme : homme dans la société française qui vaut 13:12. L'Assemblée contient toujours 577 députés au total.


Combien faudrait-il de femmes en plus à l'Assemblée pour que le ratio atteigne 13:12 ?

Enoncé du sujet B

Exercice 1. (4 points)

Déterminer l'équation de chaque droite ci-dessous.



Exercice 2. (5 points)

Sur la figure ci-contre, ABCD est un carré de côté 8 cm. Le point M est un point mobile du segment [AD], on pose que AM = x.

- ▶ 1a) Dans quel intervalle varie x?
- b) Ecrire, en fonction de x, l'aire du triangle ABM.
- c) Ecrire, en fonction de *x*, l'aire du rectangle *MDCE*.
- ▶ 2. Pour quelle(s) valeur(s) de *x*, l'aire du triangle *AMB* est-elle strictement supérieure à l'aire du rectangle *MDCE* ?

Exercice 3. (7 points)

▶ 1. Résoudre les inéquations ci-dessous. On représentera les solutions sur une droite graduée puis on présentera les solutions sous forme d'un intervalle.

a)
$$4 - 5x \le 7x - 2$$

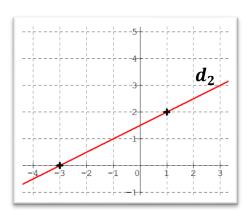
b)
$$3 - 5(3x - 7) > 5x - 2$$

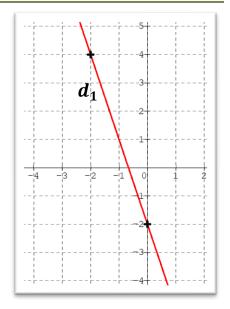
- ▶2. Posons $I = [-3; 6[, J =]-\infty; -3[$ et $K =]4; +\infty[$.
- a) Déterminer $I \cup K$ et $I \cap K$.
- b) Déterminer $I \cap J$.

Exercice 4. (4 points)

▶1. Résoudre l'inéquation :

$$\frac{220+x}{357-x} \ge \frac{13}{12}$$


▶ 2. Actuellement, à l'Assemblée Nationale, il y a 220 députées femmes et 357 députés hommes. Le ratio 220:357 est très éloigné du ratio femme : homme dans la société française qui vaut 13:12. L'Assemblée contient toujours 577 députés au total.


Combien faudrait-il de femmes en plus à l'Assemblée pour que le ratio atteigne 13:12 ?

Correction du sujet A

Correction de l'exercice 1. (4 points)

Déterminer l'équation de chaque droite ci-dessous.

La droite passe par les points A(0; -2) et B(-2; 4)

La fonction affine est de la forme f(x) = ax + b où a et b sont deux inconnues.

On a
$$f(0) = a \times 0 + b = b = -2$$

et $f(-2) = a \times (-2) + b = -2a + b = 4$

 d_1

$$-2a - 2 = 4$$

$$-2a = 4 + 2$$

$$-2a = 6$$

$$a = \frac{6}{-2}$$

$$a = -3$$

f(x) = -3x - 2

La droite passe par les points A(-3; 0) et B(1; 2)

La fonction affine est de la forme f(x) = ax + b où a et b sont deux inconnues.

On a
$$f(-3) = a \times (-3) + b = -3a + b = 0$$

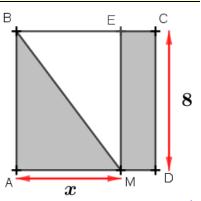
et $f(1) = a \times 1 + b = a + b = 2$

 d_2

Exercice 1.

et
$$f(1) = a \times 1 + b = a + b = 2$$

$$\begin{cases}
-3a + b = 0 \\
a + b = 2
\end{cases} donc \begin{cases}
b = 3a \\
a + 3a = 2
\end{cases}$$


$$a = \frac{2}{4} = \frac{1}{2}$$
 et $b = 3a = \frac{3}{2}$

$$f(x) = \frac{1}{2}x + \frac{3}{2}$$

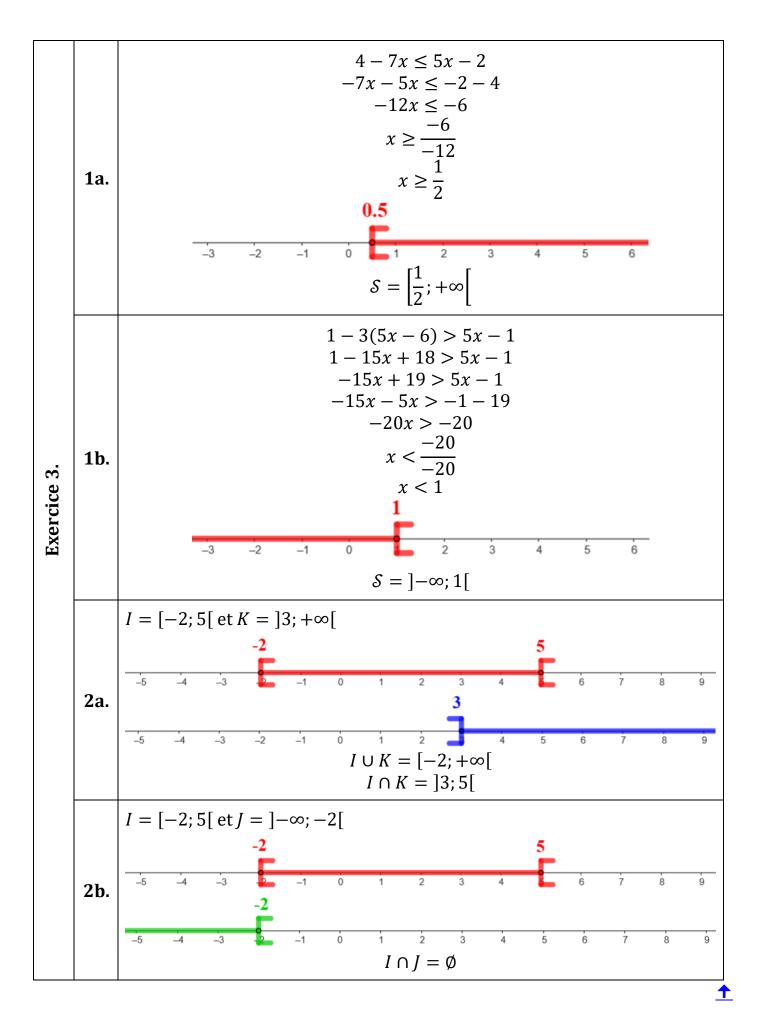
Correction de l'exercice 2. (5 points)

Sur la figure ci-contre, ABCD est un carré de côté 8 cm. Le point M est un point mobile du segment [AD], on pose que AM = x.

- ▶ 1a) Dans quel intervalle varie x?
- b) Ecrire, en fonction de x, l'aire du triangle ABM.
- c) Ecrire, en fonction de *x*, l'aire du rectangle *MDCE*.
- ▶ 2. Pour quelle(s) valeur(s) de x, l'aire du triangle AMB estelle strictement supérieure à l'aire du rectangle MDCE?

	1a.	$x \in [0; 8]$
	Iu.	λ C [0, 0]
		L'aire du triangle <i>ABM</i> vaut :
	1b.	$\frac{b \times h}{2} = \frac{AM \times AB}{2} = \frac{x \times 8}{2} = 4x$
		$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
	1c.	L'aire du rectangle <i>MDCE</i> vaut :
2.		$L \times l = MD \times CD = (8 - x) \times 8 = 64 - 8x$
Exercice 2		Résolvons : $4x > 64 - 8x$
		Je regroupe les inconnues du même côté en ajoutant 8x de chaque côté
		4x + 8x > 64
		12x > 64
	2.	Je divise par 12 de chaque côté et 12>0 donc l'inégalité ne change pas
		$x > \frac{64}{12} = \frac{16}{3}$
		$x > \frac{12}{12} - \frac{1}{3}$
		L'aire du triangle AMB est strictement supérieure à l'aire du rectangle
		<i>MDCE</i> dès que x est strictement supérieur à $\frac{16}{3}$.

Correction de l'exercice 3. (7 points)


▶ 1. Résoudre les inéquations ci-dessous. On représentera les solutions sur une droite graduée puis on présentera les solutions sous forme d'un intervalle.

$$a) \quad 4 - 7x \le 5x - 2$$

b)
$$1 - 3(5x - 6) > 5x - 1$$

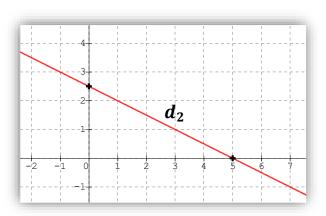
- ▶ 2. Posons $I = [-2; 5[, I =]-\infty; -2[$ et $K = [3; +\infty[$.
- a) Déterminer $I \cup K$ et $I \cap K$.
- b) Déterminer $I \cap J$.

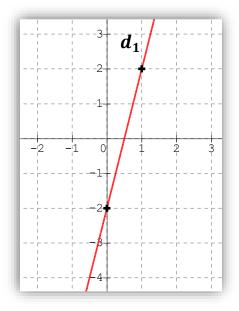
Correction de l'exercice 4. (4 points)

▶1. Résoudre l'inéquation :

$$\frac{220+x}{357-x} \ge \frac{13}{12}$$

▶2. Actuellement, à l'Assemblée Nationale, il y a 220 députées femmes et 357 députés hommes. Le ratio 220:357 est très éloigné du ratio femme : homme dans la société française qui vaut 13:12. L'Assemblée contient toujours 577 députés au total.


Combien faudrait-il de femmes en plus à l'Assemblée pour que le ratio atteigne 13:12 ?


		<u> </u>
		220 + x 13
		$\frac{1}{357 - x} \ge \frac{1}{12}$
		$\frac{220 + x}{357 - x} - \frac{13}{12} \ge 0$
		$357 - x - 12 \stackrel{>}{\sim} 0$
		$\frac{(220+x)\times 12}{-100} - \frac{13\times (357-x)}{-100} > 0$
		$\frac{(220+x)\times 12}{(357-x)\times 12} - \frac{13\times (357-x)}{12\times (357-x)} \ge 0$
		2640 + 12x - 4641 + 13x
		12(35/-x)
		$\frac{25x - 2001}{12(357 - x)} \ge 0$
		25x - 2001 > 0
	1.	25x > 2001 357 - x > 0
	1.	$x > \frac{2001}{25}$ 357 > x
e 4		
Exercice 4.		x > 80,04
er		
Ex		$x -\infty 80.04 357 +\infty$
		25x-2001 - 0 + +
		357-x + 0 -
		$\frac{25x-2001}{12(357-x)}$ - 0 + -
		S = [80,04;357[
		Notons x le nombre de femmes en plus,
		Le nombre de femmes devient alors $220 + x$ et le nombre d'hommes
	2.	357 - x car le nombre de députés est toujours égal à 577.
	∠.	L'équation à résoudre est donc celle de la question 1.
		Il faudrait donc 81 femmes en plus à l'Assemblée pour que le ratio
		atteigne 13:12 comme dans la société française.

Correction du sujet B

Correction de l'exercice 1. (4 points)

Déterminer l'équation de chaque droite ci-dessous.

La droite passe par les points A(0; -2) et B(1; 2)

La fonction affine est de la forme f(x) = ax + b où a et b sont deux inconnues.

 d_1

On a
$$f(0) = a \times 0 + b = b = -2$$

et $f(1) = a \times 1 + b = a + b = 2$

$$a - 2 = 2$$
$$a = 4$$

$$f(x) = 4x - 2$$

Exercice 1.

La droite passe par les points A(5; 0) et B(0; 2,5)

La fonction affine est de la forme f(x) = ax + b où a et b sont deux inconnues.

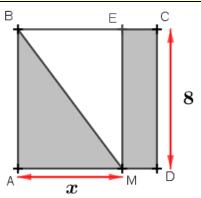
On a
$$f(5) = a \times 5 + b = 5a + b = 0$$

et $f(0) = a \times 0 + b = b = 2.5$

 d_2

$$5a + 2.5 = 0$$

 $5a = -2.5$


$$a = \frac{-2.5}{5} = -0.5$$

$$f(x) = -0.5x + 2.5$$

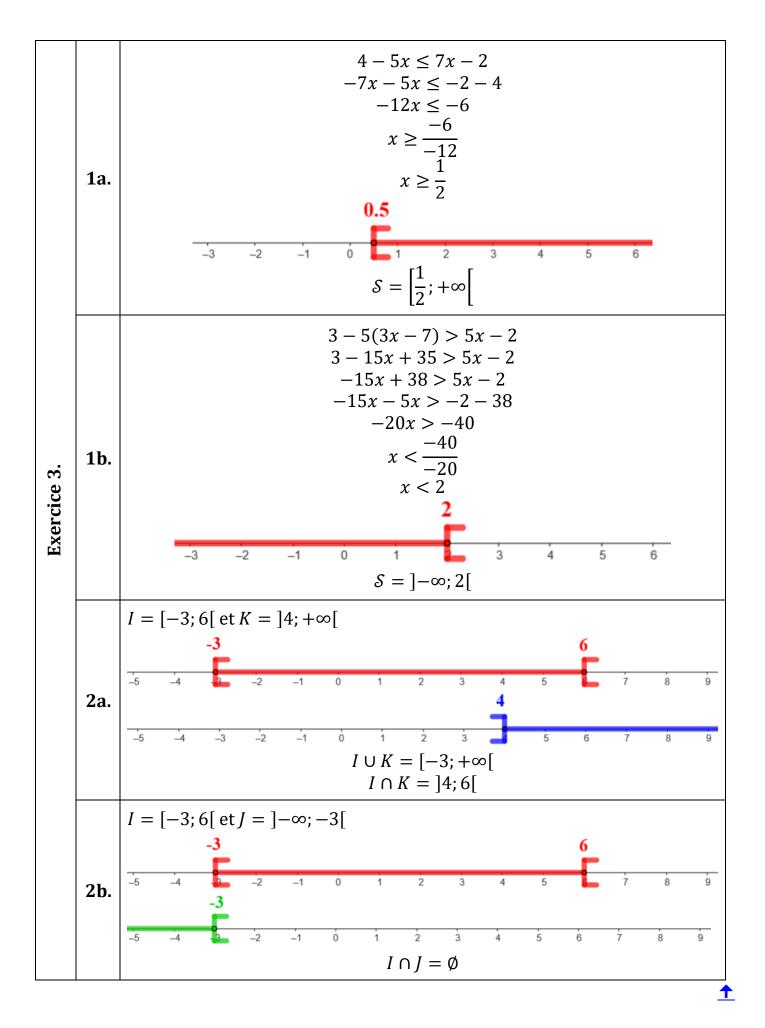
Correction de l'exercice 2. (5 points)

Sur la figure ci-contre, ABCD est un carré de côté 8 cm. Le point M est un point mobile du segment [AD], on pose que AM = x.

- ▶ 1a) Dans quel intervalle varie x?
- b) Ecrire, en fonction de x, l'aire du triangle ABM.
- c) Ecrire, en fonction de *x*, l'aire du rectangle *MDCE*.
- ▶ 2. Pour quelle(s) valeur(s) de x, l'aire du triangle AMB estelle strictement supérieure à l'aire du rectangle MDCE?

Exercice 2.	1a.	$x \in [0; 8]$
	1b.	L'aire du triangle ABM vaut : $\frac{b \times h}{2} = \frac{AM \times AB}{2} = \frac{x \times 8}{2} = 4x$
	1c.	L'aire du rectangle $MDCE$ vaut : $L \times l = MD \times CD = (8 - x) \times 8 = 64 - 8x$
	2.	Résolvons : $4x > 64 - 8x$ Je regroupe les inconnues du même côté en ajoutant $8x$ de chaque côté $4x + 8x > 64$ $12x > 64$ Je divise par 12 de chaque côté et $12 > 0$ donc l'inégalité ne change pas $x > \frac{64}{12} = \frac{16}{3}$ L'aire du triangle AMB est strictement supérieure à l'aire du rectangle $MDCE$ dès que x est strictement supérieur à $\frac{16}{3}$.

Correction de l'exercice 3. (7 points)


▶ 1. Résoudre les inéquations ci-dessous. On représentera les solutions sur une droite graduée puis on présentera les solutions sous forme d'un intervalle.

$$a) \quad 4 - 5x \le 7x - 2$$

b)
$$3 - 5(3x - 7) > 5x - 2$$

- ▶2. Posons $I = [-3; 6[, J =]-\infty; -3[$ et $K =]4; +\infty[$.
- a) Déterminer $I \cup K$ et $I \cap K$.
- b) Déterminer $I \cap J$.

Correction de l'exercice 4. (4 points)

▶1. Résoudre l'inéquation :

$$\frac{220+x}{357-x} \ge \frac{13}{12}$$

▶2. Actuellement, à l'Assemblée Nationale, il y a 220 députées femmes et 357 députés hommes. Le ratio 220:357 est très éloigné du ratio femme : homme dans la société française qui vaut 13:12. L'Assemblée contient toujours 577 députés au total.

Combien faudrait-il de femmes en plus à l'Assemblée pour que le ratio atteigne 13:12 ?

		<u> </u>
Exercice 4.		$\frac{\frac{220+x}{357-x} \ge \frac{13}{12}}{\frac{220+x}{357-x} - \frac{13}{12} \ge 0}$ $\frac{\frac{(220+x)\times 12}{357-x} - \frac{13\times(357-x)}{12} \ge 0}{\frac{12\times(357-x)}{12\times(357-x)} \ge 0}$ $\frac{\frac{2640+12x-4641+13x}{25x-2001} \ge 0}{\frac{25x-2001}{12(357-x)} \ge 0}$
	1.	$25x - 2001 > 0$ $25x > 2001$ $x > \frac{2001}{25}$ $x > 80,04$ $357 - x > 0$ $357 > x$
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		357-x + + 0 -
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
		S = [80,04;357[
	2.	Notons x le nombre de femmes en plus, Le nombre de femmes devient alors $220 + x$ et le nombre d'hommes $357 - x$ car le nombre de députés est toujours égal à 577 . L'équation à résoudre est donc celle de la question 1. Il faudrait donc 81 femmes en plus à l'Assemblée pour que le ratio

atteigne 13:12 comme dans la société française.