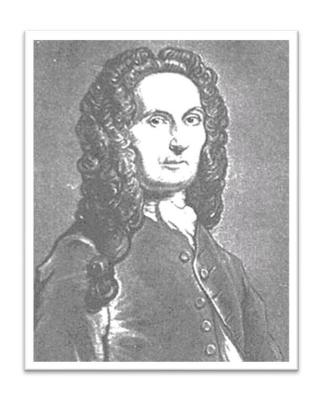


Abraham de Moivre (1667-1754)



Mathématicien surtout connu pour l'introduction des quantités imaginaires dans le calcul trigonométrique. Il s'intéressa également au calcul des probabilités : il énonça la règle des probabilités composées et un théorème « limite », montrant que la loi normale est une bonne approximation de la loi binomiale ; il étudia la théorie des séries récurrentes et employa la méthode des équations aux différences finies.

I. Equation du second degré dans C

Soit $a, b, c \in \mathbb{R}$ avec $a \neq 0$,

Théorème : L'équation $az^2 + bz + c = 0$, de discriminant

 $\Delta = b^2 - 4ac$ admet dans \mathbb{C} :

- si $\Delta = 0$, une unique solution $z = \frac{-b}{2a}$
- si $\Delta \neq 0$, deux solutions
 - réelles si $\Delta > 0$, $\mathbf{z_1} = \frac{-b \sqrt{\Delta}}{2a}$ et $\mathbf{z_2} = \frac{-b + \sqrt{\Delta}}{2a}$
 - complexes conjuguées si $\Delta < 0$, $\mathbf{z_1} = \frac{-b + i\sqrt{|\Delta|}}{2a}$ et $\mathbf{z_2} = \frac{-b i\sqrt{|\Delta|}}{2a}$

Exemple 1.

Après avoir cherché une racine sous forme imaginaire pur, factoriser, dans C, au maximum le polynôme

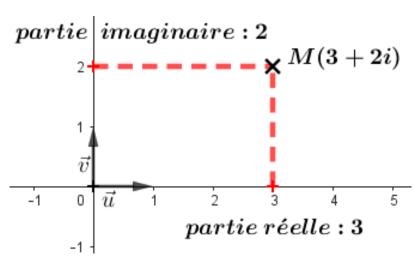
$$P(z) = z^4 - 6z^3 + 39z^2 - 150z + 350$$

II. Le plan complexe

Le plan est rapporté au repère orthonormé direct $(0, \vec{u}, \vec{v})$

Définition: Affixe d'un point

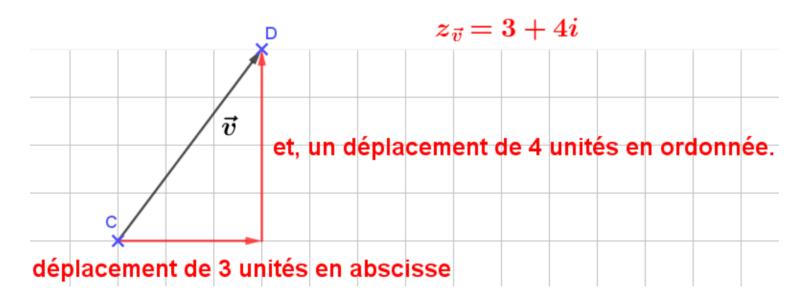
- A tout nombre complexe z = x + iy, on associe le point M de coordonnées (x; y) appelé **image** de z;
- A tout point *M* de coordonnées
 (x; y) est associé le nombre
 complexe z = x + iy appelé affixe
 du point *M*.



Définition: Affixe d'un vecteur

- A tout nombre complexe z = x + iy, on associe le vecteur du plan \vec{v} de coordonnées (x; y);
- A tout vecteur du plan \vec{v} de coordonnées (x; y), on associe le nombre complexe z = x + iy appelé **affixe du vecteur** \vec{v} .

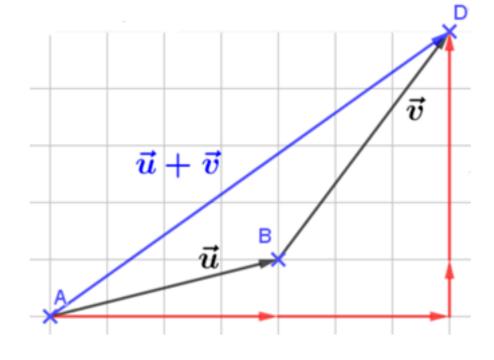
L'affixe du vecteur \vec{v} est alors



Théorème

Soit \vec{u} et \vec{v} deux vecteurs d'affixe respective $z_{\vec{u}}$ et $z_{\vec{v}}$ et $\lambda \in \mathbb{R}$,

- le vecteur somme $\vec{u} + \vec{v}$ a pour affixe $\mathbf{z}_{\vec{u}+\vec{v}} = \mathbf{z}_{\vec{u}} + \mathbf{z}_{\vec{v}}$;
- le vecteur $\lambda \vec{u}$ a pour affixe $z_{\lambda \vec{u}} = \lambda z_{\vec{u}}$.



Théorème

Soit A et B deux points d'affixes respectives z_A et z_B :

- ① le vecteur \overrightarrow{AB} a pour affixe $\mathbf{z}_{\overrightarrow{AB}} = \mathbf{z}_B \mathbf{z}_A$;
- ② le milieu I de [AB] a pour affixe $\frac{\mathbf{z}_I = \frac{\mathbf{z}_A + \mathbf{z}_B}{2}}{2}$.

Exemple 2.

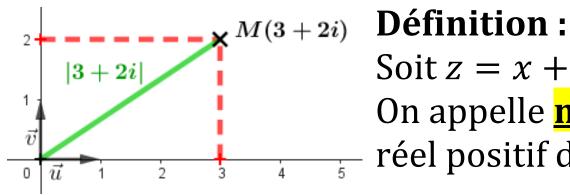
On considère les points A, B, C et D d'affixes respectives :

$$z_A = -1 - 4i$$
, $z_B = 4 + i$, $z_C = 1 + 2i$ et $z_D = 2 - 5i$.

Que peut-on observer ? Démontrez votre conjecture.

III. Forme trigonométrique d'un nombre complexe

Le plan étant rapporté au repère orthonormal $(0, \vec{u}, \vec{v})$



Soit $z = x + iy \in \mathbb{C}$,

On appelle **module** de z et on note |z| le réel positif défini par

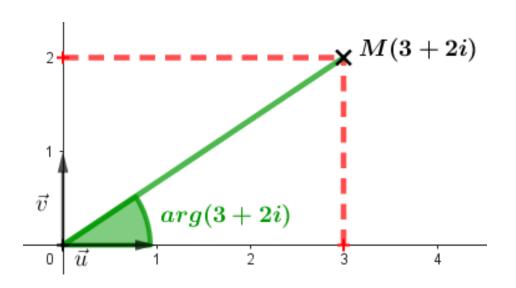
$$|z| = \sqrt{x^2 + y^2}$$

Remarque : Dans le plan complexe, si *M* est le point d'affixe z alors |z| = OM.

Propriété:
$$\forall z \in \mathbb{C} \quad |z|^2 = z \times \overline{z}$$
 (démo à savoir-faire)

Définition:

On appelle **argument** de $z \neq 0$ noté **arg**(z) une mesure en radian de l'angle orienté (\vec{u} , \overrightarrow{OM}).

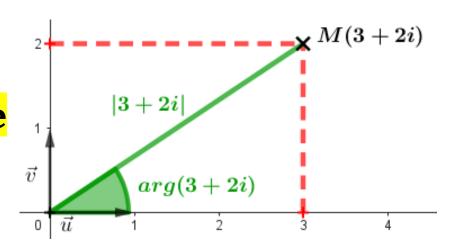


Soit θ un argument de z, les autres arguments de z sont de la forme $\theta + 2k\pi$ avec $k \in \mathbb{Z}$, donc

$$arg(z) = \theta [2\pi]$$

Définition:

La notation $\mathbf{z} = |\mathbf{z}|(\cos \theta + i \sin \theta)$ où $\arg(z) = \theta [2\pi]$ s'appelle la **forme trigonométrique** du nombre complexe z.



Exemple 3.

- ① Soit le nombre z_2 tel que $|z_2| = 2$ et arg $(z_2) = -\frac{\pi}{6}$, donner sa forme algébrique.
- ② Soit le nombre $z_1 = -2 + 2i$ donné sous forme algébrique, donner sa forme trigonométrique.

Exemple 4.

Le plan est muni du repère orthonormé direct $(0; \vec{u}; \vec{v})$. On donne le nombre complexe

$$j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

- ▶ 1a) Résoudre dans \mathbb{C} , l'équation $z^2 + z + 1 = 0$.
 - b) En déduire que $j^2 = -1 j = \bar{j}$ et que $j^3 = 1$.
- ▶ 2. Déterminer la forme trigonométrique du nombre complexe *i*.
- ▶3. On note P, Q, R les images respectives des nombres complexes 1, j et j^2 dans le plan. Quelle est la nature du triangle PQR? Justifier la réponse.

IV. Produit et quotient de nombres complexes

Propriétés:

Pour tout $z \in \mathbb{C}^*$ et $z' \in \mathbb{C}^*$ et pour tout $n \in \mathbb{N}$

$$2 |z^n| = |z|^n \text{ et } \arg(z^n) = n \times \arg(z) [2\pi]$$

$$arg\left(\frac{z}{z'}\right) = arg(z) - arg(z') [2\pi]$$

Exemple 5.

Le nombre complexe
$$z = (-5\sqrt{3} + 5\sqrt{3} i)^{30200}$$
 est-il réel ?