

Devoir à rédiger n°3 Terminale Générale Maths Expertes

Table des matières

Sujet	2
Partie A	
Partie B	
Partie C	
Correction du Sujet	
Partie A	
Partie B	4
Partio C	5

Devoir à rédiger n°3 Terminale Générale - Maths Expertes

Sujet

Partie A

Pour tout entier naturel n, on définit les entiers $a_n = 6 \times 5^n - 2$ et $b_n = 3 \times 5^n + 1$.

- ▶ 1. a. Montrer que, pour tout entier naturel n, chacun des entiers a_n et b_n est congru à 0 modulo 4.
- b. Pour tout entier naturel n, calculer $2b_n a_n$.
- c. Déterminer le PGCD de a_n et b_n .
- ▶ 2. a. Montrer que $b_{2020} \equiv 3 \times 2^{2020} + 1$ [7].
- b. Montrer que b_{2020} est divisible par 7.
- c. L'entier a_{2020} est-il divisible par 7 ? Justifier la réponse.

Partie B

On considère les suites (u_n) et (v_n) définies par :

$$u_0 = v_0 = 1$$
 et, pour tout entier naturel n , $\begin{cases} u_{n+1} = 3 \ u_n + 4 \ v_n \\ v_{n+1} = u_n + 3 \ v_n \end{cases}$

Pour un entier naturel N donné, on souhaite calculer les termes de rang N des suites (u_n) et (v_n) et on se demande si l'algorithme ci-contre permet ce calcul.

u=1k=0while k<N: k=k+1

▶ 1. On fait fonctionner l'algorithme avec N = 2. Compléter le tableau ci-contre en donnant les valeurs successivement affectées aux variables u, v et k.

u	v	k
1	1	0
		1

 \triangleright 2. L'algorithme permet-il effectivement de calculer u_N et v_N pour une valeur de Ndonnée ? Dans le cas contraire, écrire sur la copie une version corrigée de cet algorithme afin que les variables u et v contiennent bien les valeurs de u_N et v_N à la fin de son exécution.

Partie C

Pour tout entier naturel n, on définit la matrice colonne $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$.

- ▶1. Donner, sans justification, une matrice carrée *A* d'ordre 2 telle que, pour tout entier naturel $n, X_{n+1} = AX_n$.
- ▶ 2. Montrer par récurrence que, pour tout entier naturel n, on a : $X_n = A^n X_0$.
- \triangleright 3. On admet que, pour tout entier naturel n,

$$A^{n} = \frac{1}{4} \begin{pmatrix} 2 \times 5^{n} + 2 & 4 \times 5^{n} - 4 \\ 5^{n} - 1 & 2 \times 5^{n} + 2 \end{pmatrix}.$$

 $A^n=\frac{1}{4}{2\times5^n+2 \quad 4\times5^n-4\choose 5^n-1 \quad 2\times5^n+2}.$ Montrer que, pour tout entier naturel n, $u_n=\frac{a_n}{4}$ et $v_n=\frac{b_n}{4}$, où a_n et b_n sont les nombres entiers définis dans la partie A.

▶ 4. Justifier que, pour tout entier naturel n, u_n et v_n sont premiers entre eux.

Correction du devoir à rédiger n°3 **Terminale Générale - Maths Expertes**

Correction du Sujet

Partie A

Pour tout entier naturel n, on définit les entiers $a_n = 6 \times 5^n - 2$ et $b_n = 3 \times 5^n + 1$.

- ▶ 1. a. Montrer que, pour tout entier naturel n, chacun des entiers a_n et b_n est congru à 0 modulo 4.
- b. Pour tout entier naturel n, calculer $2b_n a_n$.
- c. Déterminer le PGCD de a_n et b_n . \triangleright 2. a. Montrer que $b_{2020} \equiv 3 \times 2^{2020} + 1$ [7].
- b. Montrer que b_{2020} est divisible par 7.
- c. L'entier a_{2020} est-il divisible par 7 ? Justifier la réponse.

		<u> </u>	
	5 ≡ 1	1 [4]	
	Pour tout entier naturel n , $5^n = 1^n$	= 1 [4]	
1a.	$5^n \equiv 1^n \equiv 1 [4]$		
	$6 \times 5^n \equiv 6 [4]$	$3 \times 5^n \equiv 3[4]$	
	$6 \times 5^n - 2 \equiv 4 [4]$	$3 \times 5^n + 1 \equiv 4[4]$	
	$a_n \equiv 0[4]$	$b_n \equiv 0[4]$	
	Pour tout entier naturel n,		
1b.	$2b_n - a_n = 2(3 \times 5^n + 1) - (6 \times 5^n - 2)$		
10.	$2b_n - a_n = 6 \times 5^n + 2 - 6 \times 5^n + 2$		
	$2b_n - a_n = 4$		
	Soit $n \in \mathbb{N}$,		
	a_n et b_n sont divisibles par 4 donc $PGCD(a_n; b_n) \ge 4$		
1c.	$ \begin{cases} PGCD(a_n; b_n) a_n \\ \text{de plus,} & \text{et} \end{cases} \begin{cases} \text{donc} PGCD(a_n; b_n) 2b_n - a_n \end{cases} $		
	de plus, et $PGCD(a_n; b_n) b_n$ donc $PGCD(a_n; b_n) 2b_n - a_n$		
	On en déduit que $PGCD(a_n;b_n) 4$ et donc que $PGCD(a_n;b_n)=4$		
	5 ≡ -	-2 [7]	
	$5^{2020} \equiv (-2)^{2020} [7] \equiv 2^{2020} [7]$		
2a.	$3 \times 5^{2020} \equiv 3 \times 2^{2020} [7]$		
	$3 \times 5^{2020} + 1 \equiv 3 \times 2^{2020} + 1 [7]$		
	$b_{2020} \equiv 3 \times 3$	$2^{2020} + 1$ [7]	

 $2^{3} \equiv 1 \ [7]$ $(2^{3})^{673} = 2^{2019} \equiv 1 \ [7]$ $2^{2020} \equiv 2 \ [7]$ $3 \times 2^{2020} \equiv 6 \ [7]$ $3 \times 2^{2020} + 1 \equiv 7 \ [7]$ $b_{2020} = 0 \ [7]$ $b_{2020} = 0 \ [7]$ $b_{2020} = 0 \ [7]$ Puisque $PGCD(a_{2020}; b_{2020}) = 4$, alors 7 ne peut pas être un diviseur commun à a_{2020} et b_{2020} . Donc, a_{2020} n'est pas divisible par 7.

<u></u>

Partie B

On considère les suites (u_n) et (v_n) définies par :

$$u_0=v_0=1$$
 et, pour tout entier naturel n , $\begin{cases} u_{n+1}=3\ u_n+4\ v_n \\ v_{n+1}=u_n+3\ v_n \end{cases}$

Pour un entier naturel N donné, on souhaite calculer les termes de rang N des suites (u_n) et (v_n) et on se demande si l'algorithme ci-contre permet ce calcul.

▶ 1. On fait fonctionner l'algorithme avec N = 2. Compléter le tableau ci-contre en donnant les valeurs successivement affectées aux variables u, v et k.

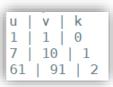
u=1	
v=1	
k=0	
while k <n:< td=""><td></td></n:<>	
u=3*u+4*v	
v=u+3*v	
k=k+1	

u	v	k
1	1	0
		1

▶ 2. L'algorithme permet-il effectivement de calculer u_N et v_N pour une valeur de N donnée ? Dans le cas contraire, écrire sur la copie une version corrigée de cet algorithme afin que les variables u et v contiennent bien les valeurs de u_N et v_N à la fin de son exécution.

1.

2.



	Α	В	C
1	u	v	k
2	1	1	0
3	7	4	1
4	37	19	2

Cet algorithme ne permet pas de calculer u_N et v_N .

En effet, le calcul de v_1 nécessite la valeur de u_0 , mais, dans l'algorithme la variable u est remplacée par la valeur u_1 .

u=1		
v=1		
k=0		
while	$k \le N$:	
sto	okage=u	
u=3	3*u+4*v	
V=8	stokage+3*v	
k=}	ς+1	

Partie C

Pour tout entier naturel n, on définit la matrice colonne $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$.

- ▶ 1. Donner, sans justification, une matrice carrée A d'ordre 2 telle que, pour tout entier naturel n, $X_{n+1} = AX_n$.
- ▶ 2. Montrer par récurrence que, pour tout entier naturel n, on a : $X_n = A^n X_0$.
- \triangleright 3. On admet que, pour tout entier naturel n,

$$A^{n} = \frac{1}{4} \begin{pmatrix} 2 \times 5^{n} + 2 & 4 \times 5^{n} - 4 \\ 5^{n} - 1 & 2 \times 5^{n} + 2 \end{pmatrix}.$$

Montrer que, pour tout entier naturel n, $u_n = \frac{a_n}{4}$ et $v_n = \frac{b_n}{4}$, où a_n et b_n sont les nombres entiers définis dans la partie A.

▶ 4. Justifier que, pour tout entier naturel n, u_n et v_n sont premiers entre eux.

1. $ \forall n \in \mathbb{N}, \begin{cases} u_{n+1} = 3 \ u_n + 4 \ v_n \\ v_{n+1} = u_n + 3 \ v_n \end{cases} \operatorname{donc} {u_{n+1} \choose v_{n+1}} = {3 \choose 1} {4 \choose 1} {u_n \choose v_n} $ $\operatorname{donc} X_{n+1} = A \ X_n \operatorname{avec} A = {3 \choose 1} {4 \choose 1} $	
--	--

$$\mathcal{P}(n): X_n = A^n X_0$$

Initialisation, pour n = 0:

$$X_0 = I_2 X_0 = A^0 X_0$$
 donc $\mathcal{P}(0)$ est vraie.

Hérédité: Je suppose que $\mathcal{P}(n)$: $X_n = A^n X_0$ est vraie pour n entier naturel fixé, 2.

$$X_{n+1} = A X_n$$

$$X_{n+1} = A A^n X_0 = A^{n+1} X_0$$
donc $\mathcal{P}(n+1)$ est vraie

Conclusion: On en déduit que, $\forall n \in \mathbb{N}, \ \mathcal{P}(n): X_n = A^n X_0$ est vraie.

	$\forall n \in \mathbb{N}, \ X_n = A^n X_0$
	$ \binom{u_n}{v_n} = \frac{1}{4} \binom{2 \times 5^n + 2}{5^n - 1} \frac{4 \times 5^n - 4}{2 \times 5^n + 2} \binom{u_0}{v_0} $
3.	$\binom{u_n}{v_n} = \frac{1}{4} \binom{2 \times 5^n + 2}{5^n - 1} \frac{4 \times 5^n - 4}{2 \times 5^n + 2} \binom{1}{1}$
3.	${\binom{u_n}{v_n}} = \frac{1}{4} {\binom{2 \times 5^n + 2 + 4 \times 5^n - 4}{5^n - 1 + 2 \times 5^n + 2}}$
	$\binom{u_n}{v_n} = \frac{1}{4} \binom{6 \times 5^n - 2}{3 \times 5^n + 1} = \frac{1}{4} \binom{a_n}{b_n}$
	a_n , b_n

On a alors, pour tout entier naturel n, $u_n = \frac{a_n}{4}$ et $v_n = \frac{b_n}{4}$.

$$\forall n \in \mathbb{N}, \ PGCD(a_n; b_n) = 4$$

alors, on peut écrire que, $a_n = 4u$ et $b_n = 4v$ où u et v sont premiers entre eux donc $\forall n \in \mathbb{N}$, $u_n = \frac{a_n}{4}$ et $v_n = \frac{b_n}{4}$ sont premiers entre eux.