

Terminale Préparation Contrôle Spécialité Mathématiques

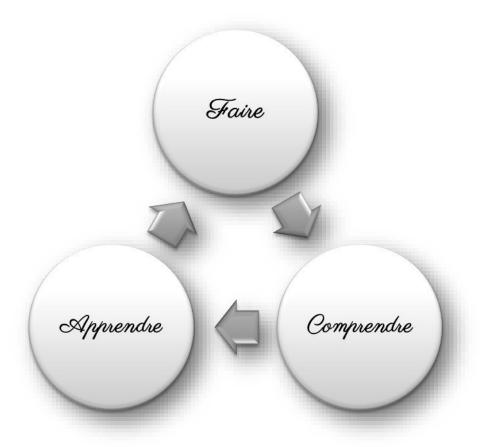


Table des matières

Enoncé du sujet	2
Exercice 1	
Exercice 2.	
Exercice 3.	
Exercice 4.	
Correction du sujet	
Correction de l'exercice 1	
Correction de l'exercice 2	6
Correction de l'exercice 3	8
Correction de l'exercice 4	12

Terminale Préparation Contrôle

Spécialité Mathématiques

Enoncé du sujet

Exercice 1.

 $\overrightarrow{ABCDEFGH}$ est un cube. I est le milieu de [CG], J celui de [EH] et K vérifie $\overrightarrow{GK} = \frac{1}{3}\overrightarrow{GH}$.

- ▶ 1a. Exprimer les vecteurs \overrightarrow{AI} , \overrightarrow{AJ} et \overrightarrow{AK} en fonction des vecteurs \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} .
- b. En déduire qu'il existe deux réels x et y tels que $\overrightarrow{AK} = x\overrightarrow{AI} + y\overrightarrow{AJ}$.
- c. Que peut-on en déduire?
- ▶ 2. On considère le repère $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$.
- a. Déterminer une équation paramétrique de la droite (d) parallèle à (JK) passant par A.
- b. Déterminer les coordonnées du point d'intersection L des droites (d) et (BC).
- c. Les droites (AL) et (KI) sont-elles sécantes ?

Exercice 2.

Dans l'espace rapporté à un repère orthonormé $(0; \vec{\imath}; \vec{\jmath}; \vec{k})$, on considère les points A(1; 0; 2), B(-2; 4; -1), C(-1; 1; 3) et D(1,5,-7).

La droite (*d*) a pour représentation paramétrique : $\begin{cases} x = -7 + 3t \\ y = 9 - 4t & t \in \mathbb{R} \\ z = 3t - 3 \end{cases}$

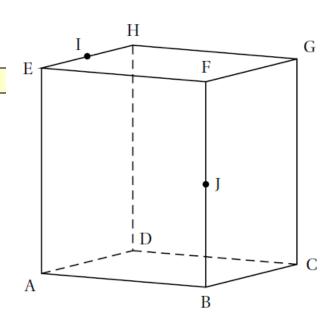
- \blacktriangleright 1. a. Déterminer une représentation paramétrique de la droite (AB).
 - b. Le point C appartient-il à la droite (d)?
 - c. Les droites (AB) et (d) sont-elles parallèles?
- ▶ 2. a. Déterminer deux réels α et β tels que $\overrightarrow{AD} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$.
 - b. Que peut-on en déduire?
- c. Les droites (d) et (AD) sont-elles sécantes ? si oui, déterminer les coordonnées du point d'intersection.
- ▶ 3. a. Déterminer les coordonnées du point d'intersection entre la droite (d) et le plan (0xz).
- b. En déduire l'intersection entre les plans (ABC) et (Oxz).

Exercice 3.

Dans l'espace, on considère le cube ABCDEFGH représenté ci-contre. On note I et J les milieux respectifs des segments [EH] et [FB].

PARTIE A.

On munit l'espace du repère orthonormé $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$.



- ▶ 1. Donner les coordonnées des points I et J.
- ▶ 2. a) Montrer que le vecteur $\vec{n} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ est un vecteur normal au plan (*BGI*).
- b) En déduire une équation cartésienne du plan (BGI).
- c) On note K le milieu du segment [HJ]. Le point K appartient-il au plan (BGI)?
- ▶ 3. Le but de cette question est de calculer l'aire du triangle *BGI*.
- a) En utilisant par exemple le triangle FIG pour base, démontrer que le volume du tétraèdre FBIG est égal à $\frac{1}{6}$.

On rappelle que le volume V d'un tétraèdre est donné par la formule $V = \frac{1}{3} \times B \times h$ où B désigne l'aire d'une base et h la hauteur correspondante.

- b) Déterminer une représentation paramétrique de la droite Δ passant par F et orthogonale au plan (BGI).
- c) La droite Δ coupe le plan (BGI) en F'. Montrer que le point F' a pour coordonnées $\left(\frac{7}{9}; \frac{4}{9}; \frac{5}{9}\right)$.
- d) Calculer la longueur FF'. En déduire l'aire du triangle BGI.

PARTIE B.

Construire, sans justifier mais en laissant apparents les traits de construction, la section du cube par le plan (BGI).

Exercice 4.

Cet exercice est un QCM. Pour chaque question, une seule des propositions est correcte.

L'espace est rapporté à un repère orthonormé $(0; \vec{\imath}; \vec{\jmath}; \vec{k})$. Les points A, B, C et D ont pour coordonnées respectives A(1; -1; 2), B(3; 3; 8), C(-3; 5; 4) et D(1; 2; 3).

On note (d) la droite ayant pour représentation paramétrique $\begin{cases} x=t+1\\ y=2t-1, & t\in\mathbb{R}\\ z=3t+2 \end{cases}$

et (d') la droite ayant pour représentation paramétrique $\begin{cases} x=k+1 \\ y=k+3 \end{cases}$, $k \in \mathbb{R}$. z=-k+4

On note \mathcal{P} le plan d'équation x + y - z + 2 = 0.

Question 1:

Proposition a. Les droites (d) et (d') sont parallèles.

Proposition b. Les droites (d) et (d') sont coplanaires.

Proposition c. Le point C appartient à la droite (d).

Proposition d. Les droites (d) et (d') sont orthogonales.

Question 2:

Proposition a. Le plan \mathcal{P} contient la droite (d) et est parallèle à la droite (d').

Proposition b. Le plan \mathcal{P} contient la droite (d') et est parallèle à la droite (d).

Proposition c. Le plan \mathcal{P} contient la droite (d) et est orthogonal à la droite (d').

Proposition d. Le plan \mathcal{P} contient les droites (d) et (d').

Question 3:

Proposition a. Les points *A*, *D* et *C* sont alignés.

Proposition b. Le triangle *ABC* est rectangle en *A*.

Proposition c. Le triangle *ABC* est équilatéral.

Proposition d. Le point D est le milieu du segment [AB].

Question 4:

On note \mathcal{P}' le plan contenant la droite (d') et le point A. Un vecteur normal à ce plan est .

Proposition a. $\vec{n}(-1; 5; 4)$

Proposition b. $\vec{n}(3; -1; 2)$

Proposition c. $\vec{n}(1; 2; 3)$

Proposition d. $\vec{n}(1; 1; -1)$

1

Terminale Contrôle Spécialité Mathématiques Correction du sujet

Correction de l'exercice 1.

ABCDEFGH est un cube. *I* est le milieu de [CG], *J* celui de [EH] et *K* vérifie $\overrightarrow{GK} = \frac{1}{3}\overrightarrow{GH}$.

- ▶ 1a. Exprimer les vecteurs \overrightarrow{AI} , \overrightarrow{AJ} et \overrightarrow{AK} en fonction des vecteurs \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} .
- b. En déduire qu'il existe deux réels x et y tels que $\overrightarrow{AK} = x\overrightarrow{AI} + y\overrightarrow{AJ}$.
- c. Que peut-on en déduire?
- ▶ 2. On considère le repère $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$.
- a. Déterminer une équation paramétrique de la droite (d) parallèle à (JK) passant par A.
- b. Déterminer les coordonnées du point d'intersection L des droites (d) et (BC).
- c. Les droites (AL) et (KI) sont-elles sécantes ?

		<u>. </u>		
ce 1.	1 a.	$\overrightarrow{AI} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CI}$ $\overrightarrow{AI} = \overrightarrow{AB} + \overrightarrow{AD} + \frac{1}{2}\overrightarrow{CG}$ $\overrightarrow{AI} = \overrightarrow{AB} + \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AE}$		
		$\overrightarrow{A}\overrightarrow{J} = \overrightarrow{A}\overrightarrow{E} + \overrightarrow{E}\overrightarrow{J}$ $\overrightarrow{A}\overrightarrow{J} = \overrightarrow{A}\overrightarrow{E} + \frac{1}{2}\overrightarrow{E}\overrightarrow{H}$ $\overrightarrow{A}\overrightarrow{J} = \overrightarrow{A}\overrightarrow{E} + \frac{1}{2}\overrightarrow{E}\overrightarrow{H}$ $\overrightarrow{A}\overrightarrow{J} = \overrightarrow{A}\overrightarrow{E} + \frac{1}{2}\overrightarrow{A}\overrightarrow{D}$ $\overrightarrow{A}\overrightarrow{K} = \overrightarrow{A}\overrightarrow{B} + \overrightarrow{A}\overrightarrow{D} + \overrightarrow{A}\overrightarrow{E} + \frac{1}{3}\overrightarrow{G}\overrightarrow{H}$ $\overrightarrow{A}\overrightarrow{K} = \overrightarrow{A}\overrightarrow{B} + \overrightarrow{A}\overrightarrow{D} + \overrightarrow{A}\overrightarrow{E} - \frac{1}{3}\overrightarrow{A}\overrightarrow{B}$ $\overrightarrow{A}\overrightarrow{K} = \frac{2}{3}\overrightarrow{A}\overrightarrow{B} + \overrightarrow{A}\overrightarrow{D} + \overrightarrow{A}\overrightarrow{E}$		
Exercice 1	1b.	$\begin{vmatrix} \frac{2}{3}\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD} + \frac{2}{3} \times \frac{1}{2}\overrightarrow{AE} \\ \frac{2}{3}\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD} + \frac{1}{3}\overrightarrow{AE} \end{vmatrix} \begin{vmatrix} \frac{2}{3}\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AE} + \frac{2}{3} \times \frac{1}{2}\overrightarrow{AD} \\ \frac{2}{3}\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AE} + \frac{1}{3}\overrightarrow{AD} \end{vmatrix}$ $\operatorname{donc} \ \frac{2}{3}\overrightarrow{AI} + \frac{2}{3}\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD} + \frac{1}{3}\overrightarrow{AE} + \frac{2}{3}\overrightarrow{AE} + \frac{1}{3}\overrightarrow{AD}$ $2\overrightarrow{AI} + 2\overrightarrow{AI} + 2\overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{AB}$		
	1c.	$\frac{2}{3}\overrightarrow{AI} + \frac{2}{3}\overrightarrow{AJ} = \frac{2}{3}\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}$ $\frac{2}{3}\overrightarrow{AI} + \frac{2}{3}\overrightarrow{AJ} = \overrightarrow{AK}$ On peut déduire que les vecteurs \overrightarrow{AI} ; \overrightarrow{AJ} ; \overrightarrow{AK} sont coplanaires. Donc, les points A , I , J et K sont coplanaires.		

		$A(0;0;0)$ $J\left(0;\frac{1}{2};1\right)$ $K\left(\frac{2}{3};1;1\right)$ $\overrightarrow{JK}\begin{pmatrix}2/3\\1/2\\0\end{pmatrix}$
		Une équation paramétrique est donc :
2	2a.	$\begin{cases} x = \frac{2}{3}t \\ y = \frac{1}{2}t \end{cases} t \in \mathbb{R}$ $z = 0$
		Soit $L(x; y; z) \in (BC)$ donc $x = 1$ et $z = 0$
		De plus, $L(1; y; 0) \in (d)$
2	?b.	$\begin{cases} 1 = \frac{2}{3}t \\ y = \frac{1}{2}t \\ 0 = 0 \end{cases} \Leftrightarrow \begin{cases} t = \frac{3}{2} \\ y = \frac{3}{4} \end{cases} \text{ et donc } L\left(1; \frac{3}{4}; 0\right)$
		La droite (AL) parallèle à (JK) et passant par A est dans le même plan que
		la droite (<i>KI</i>). De plus, $\overrightarrow{JK}\begin{pmatrix} \frac{2}{3} \\ \frac{1}{2} \\ 0 \end{pmatrix}$ et $I\left(1;1;\frac{1}{2}\right)$ $K\left(\frac{2}{3};1;1\right)$ $\overrightarrow{KI}\begin{pmatrix} \frac{1}{3} \\ 0 \\ -\frac{1}{2} \end{pmatrix}$ ne sont pas parallèles car $\frac{1/3}{2/3} \neq \frac{0}{1/2}$
		Les droites (AL) et (KI) sont donc sécantes.
2	?c.	La droite (AD) a pour représentation paramétrique : $ (AL) \begin{cases} x = \frac{2}{3}t \\ y = \frac{1}{2}t \end{cases} & t \in \mathbb{R} \text{ et } (KI) \begin{cases} x = 1 + \frac{1}{3}t' \\ y = 1 \end{cases} & t' \in \mathbb{R} \end{cases} $ $ z = 0 $ $ \begin{cases} \frac{1}{2}t = 1 + \frac{1}{3}t' \\ \frac{1}{2}t = 1 \end{cases} \Leftrightarrow \begin{cases} t = 2 \\ t' = 1 \end{cases} $ $ 0 = \frac{1}{2} - \frac{1}{2}t' $

Dans l'espace rapporté à un repère orthonormé $(0; \vec{\imath}; \vec{j}; \vec{k})$, on considère les points A(1; 0; 2), B(-2; 4; -1), C(-1; 1; 3) et D(1,5,-7).

La droite (*d*) a pour représentation paramétrique : $\begin{cases} x = -7 + 3t \\ y = 9 - 4t & t \in \mathbb{R} \\ z = 3t - 3 \end{cases}$

- \blacktriangleright 1. a. Déterminer une représentation paramétrique de la droite (AB).
 - b. Le point C appartient-il à la droite (d)?
 - c. Les droites (AB) et (d) sont-elles parallèles?
- ▶ 2. a. Déterminer deux réels α et β tels que $\overrightarrow{AD} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$.
 - b. Que peut-on en déduire?
- c. Les droites (d) et (AD) sont-elles sécantes ? si oui, déterminer les coordonnées du point d'intersection.
- ▶ 3. a. Déterminer les coordonnées du point d'intersection entre la droite (d) et le plan (0xz).
 - b. En déduire l'intersection entre les plans (ABC) et (Oxz).

•	b. En déduite i intersection entre les plans (ABC) et (Ox2).		
	1 a.	$A(1;0;2) B(-2;4;-1) \overrightarrow{AB} \begin{pmatrix} -3\\4\\-3 \end{pmatrix}$	
		Une équation paramétrique de (AB) est donc	
		$\begin{cases} x = 1 - 3t \\ y = 4t t \in \mathbb{R} \\ z = 2 - 3t \end{cases}$	
	1b.	$C(-1;1;3) \begin{cases} -1 = -7 + 3t \\ 1 = 9 - 4t \iff t = 2 \text{ donc } C \in (d) \\ 3 = 3t - 3 \end{cases}$	
Exercice 3.	1c.	Un vecteur directeur de (d) est $\vec{u} \begin{pmatrix} 3 \\ -4 \\ 3 \end{pmatrix}$ or $\vec{u} = -\overrightarrow{AB}$	
xer		Les droites (AB) et (d) sont donc parallèles.	
		A(1;0;2) $B(-2;4;-1)$ $C(-1;1;3)$ $D(1,5,-7)$	
		$ \overrightarrow{AD}\begin{pmatrix}0\\5\\-9\end{pmatrix} \overrightarrow{AB}\begin{pmatrix}-3\\4\\-3\end{pmatrix} \overrightarrow{AC}\begin{pmatrix}-2\\1\\1\end{pmatrix} $	
	2a.	$\begin{cases} 0 = -3\alpha - 2\beta \\ 5 = 4\alpha + \beta \\ -9 = -3\alpha + \beta \end{cases} \Leftrightarrow \begin{cases} \beta = 5 - 4\alpha \\ 0 = -3\alpha - 2\beta \\ -9 = -3\alpha + \beta \end{cases} \Leftrightarrow \begin{cases} \beta = 5 - 4\alpha \\ 0 = -3\alpha - 10 + 8\alpha \\ -9 = -3\alpha + 5 - 4\alpha \end{cases}$	
		$\Leftrightarrow \begin{cases} \beta = 5 - 4\alpha \\ 5\alpha = 10 \\ -7\alpha = -14 \end{cases} \Leftrightarrow \begin{cases} \beta = -3 \\ \alpha = 2 \end{cases}$	
		donc $\overrightarrow{AD} = 2\overrightarrow{AB} - 3\overrightarrow{AC}$	

et donc que les points A , B , C et D sont coplanaires. La droite (d) parallèle à (AB) et passant par C est dans le même plan que la droite (AD) . De plus, $\overrightarrow{u} \begin{pmatrix} 3 \\ -4 \\ 3 \end{pmatrix}$ et $\overrightarrow{AD} \begin{pmatrix} 0 \\ 5 \\ -9 \end{pmatrix}$ ne sont pas parallèles $\operatorname{car} \frac{0}{3} \neq \frac{5}{-4} \neq -\frac{9}{3}$ 2c. Les droites (d) et (AD) sont donc sécantes. La droite (AD) a pour représentation paramétrique: $\begin{cases} x = 1 \\ y = 5t' & t' \in \mathbb{R} \end{cases}$ 2c. $\begin{cases} -7 + 3t = 1 \\ 9 - 4t = 5t' \\ 3t - 3 = 2 - 9t' \end{cases} \Leftrightarrow \begin{cases} t = \frac{8}{3} \\ 5t' = -\frac{5}{3} \Leftrightarrow \begin{cases} t = \frac{8}{3} \\ t' = -\frac{1}{3} \end{cases}$ Les droites (d) et (AD) se coupent donc au point $(1; -\frac{5}{3}; 5)$. Soit $M(x; y; z) \in (Oxz)$ donc $y = 0$ De plus, $M(x; 0; z) \in (d)$ 3a. $\begin{cases} x = -7 + 3t \\ 0 = 9 - 4t \\ z = 3t - 3 \end{cases} \Leftrightarrow \begin{cases} t = \frac{9}{4} \\ x = -7 + 3 \times \frac{9}{4} = -\frac{1}{4} \\ z = 3 \times \frac{9}{4} - 3 = \frac{15}{4} \end{cases}$ On observe que $A(1; 0; 2) \in (Oxz)$		
la droite (AD) . De plus, $\vec{u} \begin{pmatrix} 3 \\ -4 \\ 3 \end{pmatrix}$ et $\overrightarrow{AD} \begin{pmatrix} 0 \\ 5 \\ -9 \end{pmatrix}$ ne sont pas parallèles $\operatorname{car} \frac{0}{3} \neq \frac{5}{-4} \neq -\frac{9}{3}$ 2c. Les droites (d) et (AD) sont donc sécantes. La droite (AD) a pour représentation paramétrique: $\begin{cases} x = 1 \\ y = 5t' & t' \in \mathbb{R} \end{cases}$ 2c. $\begin{cases} -7 + 3t = 1 \\ 9 - 4t = 5t' \\ 3t - 3 = 2 - 9t' \end{cases} \Leftrightarrow \begin{cases} t = \frac{8}{3} \\ 5t' = -\frac{5}{3} \\ -9t' = 3 \end{cases} \end{cases} \begin{cases} t = \frac{8}{3} \\ t' = -\frac{1}{3} \end{cases}$ Les droites (d) et (AD) se coupent donc au point $(1; -\frac{5}{3}; 5)$. Soit $M(x; y; z) \in (Oxz)$ donc $y = 0$ De plus, $M(x; 0; z) \in (d)$ 3a. $\begin{cases} x = -7 + 3t \\ 0 = 9 - 4t \\ z = 3t - 3 \end{cases} \begin{cases} t = \frac{9}{4} \\ x = -7 + 3 \times \frac{9}{4} = -\frac{1}{4} \\ z = 3 \times \frac{9}{4} - 3 = \frac{15}{4} \end{cases}$ On observe que $A(1; 0; 2) \in (Oxz)$	2b.	On peut alors en déduire que les vecteurs \overrightarrow{AD} , \overrightarrow{AB} et \overrightarrow{AC} sont coplanaires et donc que les points A , B , C et D sont coplanaires.
$\begin{cases} x = 1 \\ y = 5t' & t' \in \mathbb{R} \end{cases}$ $z = 2 - 9t'$ $\begin{cases} -7 + 3t = 1 \\ 9 - 4t = 5t' \\ 3t - 3 = 2 - 9t' \end{cases} \Leftrightarrow \begin{cases} t = \frac{8}{3} \\ 5t' = -\frac{5}{3} \Leftrightarrow \begin{cases} t = \frac{8}{3} \\ t' = -\frac{1}{3} \end{cases} \end{cases}$ Les droites (d) et (AD) se coupent donc au point $(1; -\frac{5}{3}; 5)$. Soit $M(x; y; z) \in (Oxz)$ donc $y = 0$ De plus, $M(x; 0; z) \in (d)$ $\begin{cases} x = -7 + 3t \\ 0 = 9 - 4t \Leftrightarrow \end{cases} \begin{cases} t = \frac{9}{4} \\ x = -7 + 3 \times \frac{9}{4} = -\frac{1}{4} \\ z = 3 \times \frac{9}{4} - 3 = \frac{15}{4} \end{cases}$ On observe que $A(1; 0; 2) \in (Oxz)$	2c.	la droite (AD) . De plus, $\vec{u} \begin{pmatrix} 3 \\ -4 \\ 3 \end{pmatrix}$ et $\overrightarrow{AD} \begin{pmatrix} 0 \\ 5 \\ -9 \end{pmatrix}$ ne sont pas parallèles $\operatorname{car} \frac{0}{3} \neq \frac{5}{-4} \neq -\frac{9}{3}$
Soit $M(x; y; z) \in (Oxz)$ donc $y = 0$ De plus, $M(x; 0; z) \in (d)$ $\begin{cases} x = -7 + 3t \\ 0 = 9 - 4t \\ z = 3t - 3 \end{cases} \Leftrightarrow \begin{cases} t = \frac{9}{4} \\ x = -7 + 3 \times \frac{9}{4} = -\frac{1}{4} \\ z = 3 \times \frac{9}{4} - 3 = \frac{15}{4} \end{cases}$ On observe que $A(1; 0; 2) \in (Oxz)$		La droite (AD) a pour représentation paramétrique : $ \begin{cases} x=1 \\ y=5t' & t' \in \mathbb{R} \\ z=2-9t' \end{cases}$
Soit $M(x; y; z) \in (Oxz)$ donc $y = 0$ De plus, $M(x; 0; z) \in (d)$ $\begin{cases} x = -7 + 3t \\ 0 = 9 - 4t \\ z = 3t - 3 \end{cases} \Leftrightarrow \begin{cases} t = \frac{9}{4} \\ x = -7 + 3 \times \frac{9}{4} = -\frac{1}{4} \\ z = 3 \times \frac{9}{4} - 3 = \frac{15}{4} \end{cases}$ On observe que $A(1; 0; 2) \in (Oxz)$	2c.	$\begin{cases} -7 + 3t = 1 \\ 9 - 4t = 5t' \\ 3t - 3 = 2 - 9t' \end{cases} \Leftrightarrow \begin{cases} t = \frac{8}{3} \\ 5t' = -\frac{5}{3} \Leftrightarrow \begin{cases} t = \frac{8}{3} \\ t' = -\frac{1}{3} \end{cases}$ Les droites (d) et (AD) se coupent dong au point $(1: -\frac{5}{3}: 5)$
De plus, $M(x; 0; z) \in (d)$ $\begin{cases} x = -7 + 3t \\ 0 = 9 - 4t \\ z = 3t - 3 \end{cases} \Leftrightarrow \begin{cases} t = \frac{9}{4} \\ x = -7 + 3 \times \frac{9}{4} = -\frac{1}{4} \\ z = 3 \times \frac{9}{4} - 3 = \frac{15}{4} \end{cases}$ On observe que $A(1; 0; 2) \in (Oxz)$		
On observe que $A(1; 0; 2) \in (0xz)$		De plus, $M(x; 0; z) \in (d)$
	3a.	$\begin{cases} x = -7 + 3t \\ 0 = 9 - 4t \\ z = 3t - 3 \end{cases} \Leftrightarrow \begin{cases} t = \frac{9}{4} \\ x = -7 + 3 \times \frac{9}{4} = -\frac{1}{4} & \text{donc } M\left(-\frac{1}{4}; 0; \frac{15}{4}\right) \\ z = 3 \times \frac{9}{4} - 3 = \frac{15}{4} \end{cases}$
	3b.	On observe que $A(1; 0; 2) \in (Oxz)$ L'intersection entre 2 plans étant une droite, j'en déduis que l'intersection

Correction de l'exercice 3.

Dans l'espace, on considère le cube ABCDEFGH représenté ci-contre. On note I et J les milieux respectifs des segments [EH] et [FB].

entre les plans (ABC) et (Oxz) est la droite (AM).

PARTIE A.

On munit l'espace du repère orthonormé $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$.

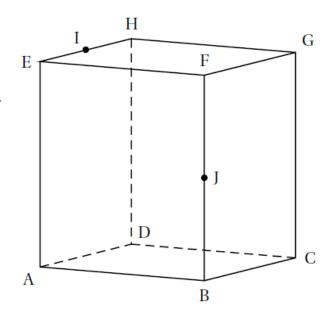
- ▶ 1. Donner les coordonnées des points I et J.
- ▶ 2. a) Montrer que le vecteur $\vec{n} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ est un vecteur normal au plan (*BGI*).

- b) En déduire une équation cartésienne du plan (BGI).
- c) On note K le milieu du segment [H]. Le point K appartient-il au plan (BGI)?
- ▶ 3. Le but de cette question est de calculer l'aire du triangle *BGI*.
- a) En utilisant par exemple le triangle FIG pour base, démontrer que le volume du tétraèdre FBIG est égal à $\frac{1}{6}$.

On rappelle que le volume V d'un tétraèdre est donné par la formule $V = \frac{1}{3} \times B \times h$ où B désigne l'aire d'une base et h la hauteur correspondante.

- b) Déterminer une représentation paramétrique de la droite Δ passant par F et orthogonale au plan (BGI).
- c) La droite Δ coupe le plan (*BGI*) en *F'*. Montrer que le point *F'* a pour coordonnées $\left(\frac{7}{9}; \frac{4}{9}; \frac{5}{9}\right)$.
- d) Calculer la longueur FF'. En déduire l'aire du triangle BGI.

Construire, sans justifier mais en laissant apparents les traits de construction, la section du cube par le plan (BGI).



<u></u>

Dans le repère orthonormé $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$, les coordonnées du point I sont $(0; \frac{1}{2}; 1)$ et celles de J sont $(1; 0; \frac{1}{2})$.

$$B(1;0;0)$$
 et $G(1;1;1)$

Partie A

 $\vec{n}. \overrightarrow{BG} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}. \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 0 - 2 + 2 = 0$

(a)
$$\vec{n} \cdot \vec{B}\vec{l} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ \frac{1}{2} \\ 1 \end{pmatrix} = -1 - 1 + 2 = 0$$

Le vecteur \vec{n} est donc orthogonal à deux vecteurs non colinéaires du plan (BGI). On peut alors en déduire que le vecteur \vec{n} est un vecteur normal au plan (BGI).

2b)	Le vecteur $\vec{n} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ est normal au plan (BGI) donc le plan (BGI) admet une équation cartésienne de la forme : $x-2y+2z+d=0$. Or le point $B(1;0;0)$ appartient au plan (BGI) donc : $1-2\times 0+2\times 0+d=0 \Leftrightarrow d=-1$ Une équation cartésienne du plan (BGI) est donc $x-2y+2z-1=0$
2c)	K le milieu du segment $[HJ]$ où $H(0;1;1)$ et $J\left(1;0;\frac{1}{2}\right)$ Donc les coordonnées de K sont $\left(\frac{1+0}{2};\frac{0+1}{2};\frac{\frac{1}{2}+1}{2}\right) \text{d'où } K\left(\frac{1}{2};\frac{1}{2};\frac{3}{4}\right)$ De plus, $x-2y+2z-1=\frac{1}{2}-2\times\frac{1}{2}+2\times\frac{3}{4}-1=\frac{1}{2}-1+\frac{3}{2}-1=0$ Donc le point K appartient au plan (BGI) .
3a)	L'aire du triangle FIG est $\frac{b \times h}{2} = \frac{FG \times EF}{2} = \frac{1}{2}$ Le volume du tétraèdre $FBIG$ est donc égal à $V = \frac{1}{3} \times B \times h = \frac{1}{3} \times \frac{1}{2} \times FB = \frac{1}{6}$
3b)	La droite Δ passe par $F(1;0;1)$ et est orthogonale au plan (BGI) . Le vecteur $\overrightarrow{n}\begin{pmatrix}1\\-2\\2\end{pmatrix}$ étant un vecteur normal au plan (BGI) , c'est donc un vecteur directeur de la droite Δ . Une représentation paramétrique de la droite Δ est donc $\begin{cases}x=1+t\\y=-2t&\text{où }t\in\mathbb{R}\\z=1+2t\end{cases}$
3c)	Le point F' appartient à la droite Δ donc ses coordonnées s'écrivent : $\begin{cases} x=1+t\\ y=-2t & \text{où } t\in \mathbb{R}\\ z=1+2t \end{cases}$

Le point F' appartient aussi au plan (BGI) donc ses coordonnées vérifient l'équation cartésienne du plan soit

$$x - 2y + 2z - 1 = 0$$

$$\Leftrightarrow 1 + t - 2(-2t) + 2(1 + 2t) - 1 = 0$$

$$\Leftrightarrow 1 + t + 4t + 2 + 4t - 1 = 0$$

$$\Leftrightarrow 9t + 2 = 0$$

$$\Leftrightarrow t = -\frac{2}{9}$$

Les coordonnées de F' sont alors :

$$\begin{cases} x = 1 - \frac{2}{9} = \frac{9}{9} - \frac{2}{9} = \frac{7}{9} \\ y = -2 \times \left(-\frac{2}{9} \right) = \frac{4}{9} \\ z = 1 + 2 \times \left(-\frac{2}{9} \right) = \frac{9}{9} - \frac{4}{9} = \frac{5}{9} \end{cases}$$

$$\overrightarrow{FF'}\begin{pmatrix} \frac{7}{9} - 1\\ \frac{4}{9} - 0\\ \frac{5}{9} - 1 \end{pmatrix} \operatorname{donc} \overrightarrow{FF'}\begin{pmatrix} -\frac{2}{9}\\ \frac{4}{9}\\ \frac{-4}{9} \end{pmatrix} \text{ et donc}$$

$$FF' = \sqrt{\frac{4}{81} + \frac{16}{81} + \frac{16}{81}} = \sqrt{\frac{36}{81}} = \frac{6}{9} = \frac{2}{3}$$

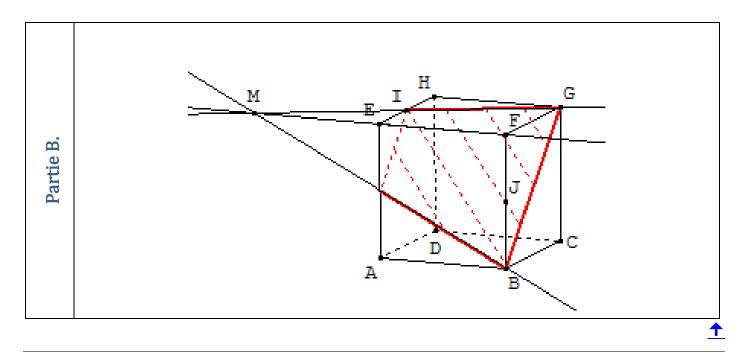
3d)

Le volume du tétraèdre FBIG qui vaut $\frac{1}{6}$ peut aussi s'écrire :

 $V = \frac{1}{3} \times B \times FF'$ où *B* représente l'aire du triangle *BGI*.

$$V = \frac{1}{6} = \frac{1}{3} \times B \times \frac{2}{3} \Leftrightarrow B = \frac{1}{6} \times 3 \times \frac{3}{2} = \frac{3}{4}$$

L'aire du triangle *BGI* vaut donc $\frac{3}{4}$.



Correction de l'exercice 4.

Cet exercice est un QCM. Pour chaque question, une seule des propositions est correcte. L'espace est rapporté à un repère orthonormé $(0; \vec{\imath}; \vec{\jmath}; \vec{k})$. Les points A, B, C et D ont pour coordonnées respectives A(1; -1; 2), B(3; 3; 8), C(-3; 5; 4) et D(1; 2; 3).

On note (d) la droite ayant pour représentation paramétrique $\begin{cases} x = t + 1 \\ y = 2t - 1, & t \in \mathbb{R} \\ z = 3t + 2 \end{cases}$

et (d') la droite ayant pour représentation paramétrique $\begin{cases} x = k+1 \\ y = k+3 \end{cases}$, $k \in \mathbb{R}$.

On note \mathcal{P} le plan d'équation x + y - z + 2 = 0.

Question 1:

Proposition a. Les droites (d) et (d') sont parallèles.

Proposition b. Les droites (d) et (d') sont coplanaires.

Proposition c. Le point C appartient à la droite (d).

Proposition d. Les droites (d) et (d') sont orthogonales.

Question 2:

Proposition a. Le plan \mathcal{P} contient la droite (d) et est parallèle à la droite (d').

Proposition b. Le plan \mathcal{P} contient la droite (d') et est parallèle à la droite (d).

Proposition c. Le plan \mathcal{P} contient la droite (d) et est orthogonal à la droite (d').

Proposition d. Le plan \mathcal{P} contient les droites (d) et (d').

Question 3:

Proposition a. Les points A, D et C sont alignés.

Proposition b. Le triangle *ABC* est rectangle en *A*.

Proposition c. Le triangle *ABC* est équilatéral.

Proposition d. Le point *D* est le milieu du segment [*AB*].

Question 4:

On note \mathcal{P}' le plan contenant la droite (d') et le point A. Un vecteur normal à ce plan est

Proposition a. $\vec{n}(-1; 5; 4)$

Proposition b. $\vec{n}(3; -1; 2)$

Proposition c. $\vec{n}(1; 2; 3)$

Proposition d. $\vec{n}(1; 1; -1)$

<u></u>

Soient $\vec{u} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ un vecteur directeur de la droite (d) et $\vec{u'} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ un vecteur directeur de la droite (d) et $\vec{u'} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ un vecteur directeur de la droite (d) et $\vec{u'} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ un vecteur directeur de la droite (d) et $\vec{u'} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ un vecteur directeur de la droite (d) et $\vec{u'} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ un vecteur directeur de la droite (d) et $\vec{u'} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ un vecteur directeur de la droite (d) et $\vec{u'} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ un vecteur directeur de la droite (d) et $\vec{u'} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ et (d) et

teur de la droite (d')

$$\frac{1}{1} \neq \frac{2}{1} \neq \frac{3}{-1}$$

Q1 $|\vec{u}|$ et $|\vec{u}'|$ ne sont pas colinéaires donc les droites (d) et (d') ne sont pas parallèles.

$$\vec{u} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \vec{u'} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = 1 + 2 - 3 = 0 \text{ donc } \vec{u} \perp \vec{u'}$$

 \vec{u} et $\vec{u'}$ sont orthogonaux donc les droites (d) et (d') sont orthogonales.

REPONSE d.

Le vecteur $\overrightarrow{u'}\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$ est un vecteur normal du plan \mathcal{P} , la droite (d') est donc or-

thogonale au plan \mathcal{P} .

Les droites (d) et (d') étant orthogonales, la droite (d) est donc parallèle au plan \mathcal{P} .

Le point A(1; -1; 2) appartient à la droite (d) et

$$x + y - z + 2 = 1 - 1 - 2 + 2 = 0$$

Donc le point A(1; -1; 2) appartient aussi au plan \mathcal{P} .

Le plan \mathcal{P} contient donc la droite (d) et est orthogonal à la droite (d').

REPONSE c.

Q2

$$A(1; -1; 2)$$
 et $D(1; 2; 3)$ donc $\overrightarrow{AD} \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$
 $A(1; -1; 2)$ et $C(-3; 5; 4)$ donc $\overrightarrow{AC} \begin{pmatrix} -4 \\ 6 \\ 2 \end{pmatrix}$
 $\frac{0}{-4} \neq \frac{3}{6} = \frac{1}{2}$

Les vecteurs \overrightarrow{AD} et \overrightarrow{AC} ne sont pas colinéaires donc les points A, D et C ne sont pas alignés.

Q3

$$A(1; -1; 2)$$
 et $B(3; 3; 8)$ donc $\overrightarrow{AB} \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$
 $\overrightarrow{AC} \begin{pmatrix} -4 \\ 6 \\ 2 \end{pmatrix} . \overrightarrow{AB} \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} = -8 + 24 + 12 = 28 \neq 0$

Donc le triangle ABC n'est pas rectangle en A.

$$AC = \sqrt{16 + 36 + 4} = \sqrt{56}$$

$$AB = \sqrt{4 + 16 + 36} = \sqrt{56}$$

$$B(3; 3; 8) \text{ et } C(-3; 5; 4) \text{ donc } \overrightarrow{BC} \begin{pmatrix} -6 \\ 2 \\ -4 \end{pmatrix}$$

$$donc AB = \sqrt{36 + 4 + 16} = \sqrt{56}$$

Le triangle *ABC* est donc équilatéral.

REPONSE c.

Soit E(1; 3; 4) un point appartenant à la droite (d') et donc au plan \mathcal{P}' .

Un vecteur normal à \mathcal{P}' sera orthogonal au vecteur $\overrightarrow{AE} \begin{pmatrix} 0 \\ 4 \\ 2 \end{pmatrix}$.

Soit $\vec{n} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ tel que $\vec{n} \cdot \overrightarrow{AE} = 0 = 4y + 2z \Leftrightarrow z = -2y$

Q4

Les vecteurs normaux au plan \mathcal{P}' sont de la forme $\vec{n} \begin{pmatrix} x \\ y \\ -2y \end{pmatrix}$ où $x \in \mathbb{R}$ et $y \in \mathbb{R}$.

Avec x = 3 et y = -1, le vecteur normal est $\vec{n} \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$

REPONSE b.