

Spécialité Mathématiques Tâche n° 1

Albert EINSTEIN Démontrer qu'une suite n'est pas arithmétique ou n'est pas géométrique

Table des matières

Enoncé des exercices	2
Exercice 1.	
Exercice 2.	
Exercice 3.	
Exercice 4.	
Correction des exercices	
Correction de l'exercice 1	
Correction de l'exercice 2	
Correction de l'exercice 3	
Correction de l'exercice 4	
JUHECHUH UC 1 CACICICE 4	J

Tâche n° 1

Démontrer qu'une suite n'est pas arithmétique ou n'est pas géométrique

Enoncé des exercices

Exercice 1.

La suite (u_n) est définie, pour tout $n \in \mathbb{N}$, par

$$u_n = \frac{2^n}{\sqrt{n+1}}.$$

- ▶1. La suite (u_n) est-elle arithmétique ?
- ▶ 2. La suite (u_n) est-elle géométrique ?

Exercice 2.

La suite (u_n) est définie, pour tout $n \in \mathbb{N}$, par

$$u_{n+1} = \frac{1}{u_n+3}$$
 et $u_0 = 1$.

- ▶1. La suite (u_n) est-elle arithmétique ?
- ▶ 2. La suite (u_n) est-elle géométrique ?

Exercice 3.

La suite (u_n) est définie, pour tout $n \in \mathbb{N}$, par

$$u_n = \sqrt{n^2 + 1}.$$

- ▶ 1. La suite (u_n) est-elle arithmétique ?
- ▶ 2. La suite (u_n) est-elle géométrique ?

Exercice 4.

La suite (u_n) est définie, pour tout $n \in \mathbb{N}$, par

$$u_{n+1} = \frac{1}{2}u_n + 1$$
 et $u_0 = 0$.

- ▶1. La suite (u_n) est-elle arithmétique?
- ▶2. La suite (u_n) est-elle géométrique ?

Tâche n° 1

Démontrer qu'une suite n'est pas arithmétique ou n'est pas géométrique

Correction des exercices

Correction de l'exercice 1.

La suite (u_n) est définie, pour tout $n \in \mathbb{N}$, par

$$u_n = \frac{2^n}{\sqrt{n+1}}.$$

- ▶1. La suite (u_n) est-elle arithmétique ?
- ▶2. La suite (u_n) est-elle géométrique ?

La suite (u_n) est-elle arithmétique ?

$$u_0 = \frac{2^0}{\sqrt{0+1}} = 1$$

$$u_1 = \frac{2^1}{\sqrt{1+1}} = \frac{2}{\sqrt{2}} = \frac{2\sqrt{2}}{2} = \sqrt{2}$$

1.
$$u_2 = \frac{2^2}{\sqrt{2+1}} = \frac{4}{\sqrt{3}} = \frac{4\sqrt{3}}{3}$$

Exercice 1.

$$u_1 - u_0 = \sqrt{2} - 1 \approx 0.4$$

$$u_2 - u_1 = \frac{4\sqrt{3}}{3} - \sqrt{2} \approx 0.9$$

On constate que $u_2 - u_1 \neq u_1 - u_0$

On en déduit que la suite (u_n) n'est pas arithmétique.

La suite (u_n) est-elle géométrique?

$$\frac{u_1}{u_0} = \frac{\sqrt{2}}{1} = \sqrt{2} \approx 1,41$$

2.
$$\frac{u_2}{u_1} = \frac{4\sqrt{3}}{3} = \frac{4\sqrt{3}}{3} \times \frac{1}{\sqrt{2}} = \frac{4\sqrt{3}}{3\sqrt{2}} = \frac{4\sqrt{3} \times \sqrt{2}}{3\sqrt{2} \times \sqrt{2}} = \frac{2\sqrt{6}}{3} \approx 1,63$$

On constate que $\frac{u_1}{u_0} \neq \frac{u_2}{u_1}$

On en déduit que la suite (u_n) n'est pas géométrique.

Correction de l'exercice 2.

La suite (u_n) est définie, pour tout $n \in \mathbb{N}$, par

$$u_{n+1} = \frac{1}{u_n + 3}$$
 et $u_0 = 1$.

- ▶1. La suite (u_n) est-elle arithmétique ?
- ▶ 2. La suite (u_n) est-elle géométrique ?

		<u> </u>
		La suite (u_n) est-elle arithmétique ?
		$u_0 = 1$
	1.	$u_1 = \frac{1}{u_0 + 3} = \frac{1}{1 + 3} = \frac{1}{4}$
		$u_2 = \frac{1}{u_1 + 3} = \frac{1}{\frac{1}{4} + 3} = \frac{1}{\frac{13}{4}} = \frac{4}{13}$
		$u_1 - u_0 = \frac{1}{4} - 1 = -\frac{3}{4}$
2.		$u_2 - u_1 = \frac{4}{13} - \frac{1}{4} = \frac{3}{52}$
Exercice 2.		On constate que $u_2 - u_1 \neq u_1 - u_0$
Ехе		On en déduit que la suite (u_n) n'est pas arithmétique
		La suite (u_n) est-elle géométrique ?
		$\frac{u_1}{u_0} = \frac{\frac{1}{4}}{1} = \frac{1}{4}$
	2.	$\frac{u_2}{u_1} = \frac{\frac{4}{13}}{\frac{1}{4}} = \frac{4}{13} \times \frac{4}{1} = \frac{16}{13}$
		On constate que $\frac{u_1}{u_0} \neq \frac{u_2}{u_1}$
		On en déduit que la suite (u_n) n'est pas géométrique.

Correction de l'exercice 3.

La suite (u_n) est définie, pour tout $n \in \mathbb{N}$, par

$$u_n = \sqrt{n^2 + 1}.$$

	La suite (u_n)	est-elle arithmétique ?	•
--	------------------	-------------------------	---

$$u_0 = \sqrt{1} = 1$$

$$u_1 = \sqrt{1^2 + 1} = \sqrt{2}$$

$$u_0 = \sqrt{1} = 1$$

$$u_1 = \sqrt{1^2 + 1} = \sqrt{2}$$

$$u_2 = \sqrt{2^2 + 1} = \sqrt{5}$$

1.

Exercice 3.

$$u_1 - u_0 = \sqrt{2} - 1 \approx 0,414$$

$$u_2 - u_1 = \sqrt{5} - \sqrt{2} \approx 0.822$$

On constate que $u_2 - u_1 \neq u_1 - u_0$

On en déduit que la suite (u_n) n'est pas arithmétique

La suite (u_n) est-elle géométrique ?

$$\frac{u_1}{u_0} = \frac{\sqrt{2}}{1} = \sqrt{2}$$

2.

$$\frac{u_2}{u_1} = \frac{\sqrt{5}}{\sqrt{2}} = \sqrt{\frac{5}{2}} = \sqrt{2,5}$$

On constate que $\frac{u_1}{u_0} \neq \frac{u_2}{u_1}$

On en déduit que la suite (u_n) n'est pas géométrique.

Correction de l'exercice 4.

La suite (u_n) est définie, pour tout $n \in \mathbb{N}$, par

$$u_{n+1} = \frac{1}{2}u_n + 1$$
 et $u_0 = 0$.

- ▶1. La suite (u_n) est-elle arithmétique ?
- ▶2. La suite (u_n) est-elle géométrique ?

		La suite (u_n) est-elle arithmétique ?
		$u_0 = 0$
	1.	$u_1 = \frac{1}{2}u_0 + 1 = 1$
		$u_2 = \frac{1}{2}u_1 + 1 = \frac{3}{2}$
		$u_1 - u_0 = 1 - 0 = 1$
_i		$u_2 - u_1 = \frac{3}{2} - 1 = \frac{1}{2}$
ice 4		On constate que $u_2 - u_1 \neq u_1 - u_0$
Exercice 4.		On en déduit que la suite (u_n) n'est pas arithmétique
		La suite (u_n) est-elle géométrique ?
	2.	$\frac{u_0}{u_1} = \frac{0}{1} = 0$
		$\frac{u_1}{u_2} = \frac{1}{\frac{3}{2}} = \frac{2}{3}$
		On constate que $\frac{u_1}{u_0} \neq \frac{u_2}{u_1}$
		On en déduit que la suite (u_n) n'est pas géométrique.