

Première Préparation du contrôle n° 2 Spécialité Mathématiques

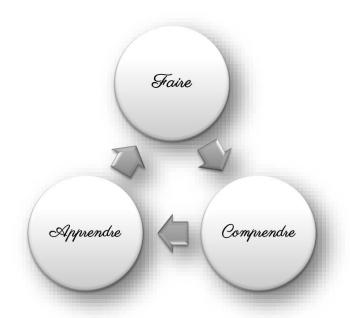


Table des matières

noncé des exercices	2
xercice 1.	
xercice 2.	
xercice 3.	
Rercice 4.	
xercice 5.	
orrection des exercices	
orrection de l'exercice 1	
orrection de l'exercice 2	4
orrection de l'exercice 3	4
orrection de l'exercice 4	6
orrection de l'exercice 5	7

Première → Préparation du contrôle

Spécialité Mathématiques - Calculatrice autorisée

Enoncé des exercices

Exercice 1.

Résoudre les inéquations suivantes :

▶1.
$$-5x^2 - 24x + 5 < 0$$

$$\triangleright 2. \quad x \ge \frac{5x - 9}{x - 1}$$

Exercice 2.

On considère la fonction $P(x) = 2x^3 + 5x^2 - 9x - 18$

- ▶ 1. Calculer P(-3). Que peut-on en déduire pour le polynôme P?
- ▶ 2. Déterminer les nombres a, b et c tels que $P(x) = (x+3)(ax^2+bx+c)$.
- ▶ 3. Factoriser P(x) sous forme de produits de polynômes de degré 1.

Exercice 3.

On lance une fusée du haut d'un immeuble de 24 mètres. On note t le temps en secondes et f(t) la hauteur en mètres de la fusée en fonction du temps. On a : $f(t) = -16t^2 + 40t + 24$ pour tout $t \in [0; +\infty[$

- ▶ 1. Pour tout $t \in [0; +\infty[$, écrire f(t) sous forme factorisée. Déterminer le temps nécessaire à la fusée pour qu'elle touche le sol.
- ▶2. Pour tout $t \in [0; +\infty[$, écrire f(t) sous forme canonique. A quelle hauteur maximale s'élèvera la fusée et à quel instant atteindra-t-elle ce maximum ?
- ▶ 3. Pendant combien de temps la fusée restera-t-elle au-dessus du plafond de 40 m d'altitude ?

Exercice 4.

- ▶ 1. Soit la suite de terme général $u_n = 3 \times 2^{-n}$ pour tout $n \in \mathbb{N}$.
 - a) Déterminer $\frac{u_{n+1}}{u_n}$, pour tout $n \in \mathbb{N}$.
 - b) En déduire le sens de variation de la suite (u_n) .
- ▶2. Soit la suite de terme général $v_n = n + 3^n$ pour tout $n \in \mathbb{N}$.
 - a) Déterminer $v_{n+1} v_n$.
 - b) En déduire le sens de variation de la suite (v_n) .
- ▶ 3. Soit la suite de terme général $w_n = \frac{1}{\sqrt{n+1}}$ pour tout $n \in \mathbb{N}$.
 - a) Déterminer $w_{n+1} w_n$.
 - b) En déduire le sens de variation de la suite (w_n) .

Exercice 5.

▶ 1. On considère la suite (u_n) définie par :

$$u_0 = 2$$
 et $u_{n+1} = u_n - 2(n+3) + 2$

- a) Déterminer les quatre premiers termes de la suite.
- b) Quel est le sens de variation de la suite (u_n) ? Démontrer votre réponse.
- ▶2. On considère la suite (v_n) définie par $v_1 = 2$ et $v_{n+1} = \frac{n \times v_n}{n+1}$
 - a) Déterminer les quatre premiers termes de la suite.
 - b) Déterminer $\frac{v_{n+1}}{v_n}$, pour tout $n \in \mathbb{N}^*$.

En déduire le sens de variation de la suite (v_n) .

Première → Préparation du contrôle

Spécialité Mathématiques

Correction des exercices

Correction de l'exercice 1.

Résoudre les inéquations suivantes :

▶1.
$$-5x^2 - 24x + 5 < 0$$

▶2.
$$x \ge \frac{5x - 9}{x - 1}$$

 $-5x^2 - 24x + 5 < 0$

a = -5, la parabole est tournée vers le bas

$$\Delta = 24^2 - 4 \times (-25) = 676 > 0,$$

le polynôme possède donc deux racines :

$$x_1 = \frac{24 - 26}{-10} = \frac{-2}{-10} = 0.2$$
 et $x_2 = \frac{24 + 26}{-10} = -\frac{50}{10} = -5$

donc
$$S =]-\infty; -5[\cup]0,2; +\infty[$$

Exercice 1.

2.

1.

$$x \ge \frac{5x - 9}{x - 1}$$

$$\Leftrightarrow x - \frac{5x - 9}{x - 1} \ge 0$$

$$\Leftrightarrow \frac{x(x - 1)}{x - 1} - \frac{5x - 9}{x - 1} \ge 0$$

$$\Leftrightarrow \frac{x^2 - x - (5x - 9)}{x - 1} \ge 0$$

$$\Leftrightarrow \frac{x^2 - x - 5x + 9}{x - 1} \ge 0$$

$$\frac{x^2 - 6x + 9}{x - 1} \ge 0$$

$$x^2 - 6x + 9 = 0$$

$$x-1=0$$
 $a=1$, la parabole est tournée vers le haut,
 $x=1$ $\Delta=36-4\times 9=0$,

le polynôme possède une racine : $x = \frac{6}{2} = 3$

x	$-\infty$	1		3	$+\infty$
$x^2 - 6x + 9$	+		+	0	+
x-1		0	+		+
$\frac{x^2-6x+9}{x-1}$	_		+	0	+

donc $S =]1; +\infty[$

Correction de l'exercice 2.

On considère la fonction $P(x) = 2x^3 + 5x^2 - 9x - 18$

- ▶ 1. Calculer P(-3). Que peut-on en déduire pour le polynôme P?
- ▶ 2. Déterminer les nombres a, b et c tels que $P(x) = (x+3)(ax^2 + bx + c)$.
- ▶ 3. Factoriser P(x) sous forme de produits de polynômes de degré 1.

		<u> </u>
Exercice 2.	1.	$P(-3) = 2 \times (-3)^3 + 5 \times (-3)^2 - 9 \times (-3) - 18 = 0$ On en déduit que -3 est une racine du polynôme P .
	2.	$P(x) \text{ peut donc être factorisé par } (x+3) :$ $P(x) = (x+3)(ax^2 + bx + c) = ax^3 + bx^2 + cx + 3ax^2 + 3bx + 3c$ $P(x) = ax^3 + (b+3a)x^2 + (c+3b)x + 3c$ or $P(x) = 2x^3 + 5x^2 - 9x - 18$ $c = 2$ $b + 3a = 5$ $c + 3b = -9$ $3c = -18$ $donc P(x) = (x+3)(2x^2 - x - 6)$
	3.	Cherchons les racines de $2x^2 - x - 6$: $\Delta = (-1)^2 - 4 \times 2 \times (-6) = 1 + 48 = 49 > 0$, $2x^2 - x - 6$ possède donc deux racines : $x_1 = \frac{1-7}{4} = \frac{-6}{4} = -\frac{3}{2}$ et $x_2 = \frac{1+7}{4} = \frac{8}{4} = 2$ donc $P(x) = 2(x+3)\left(x+\frac{3}{2}\right)(x-2)$

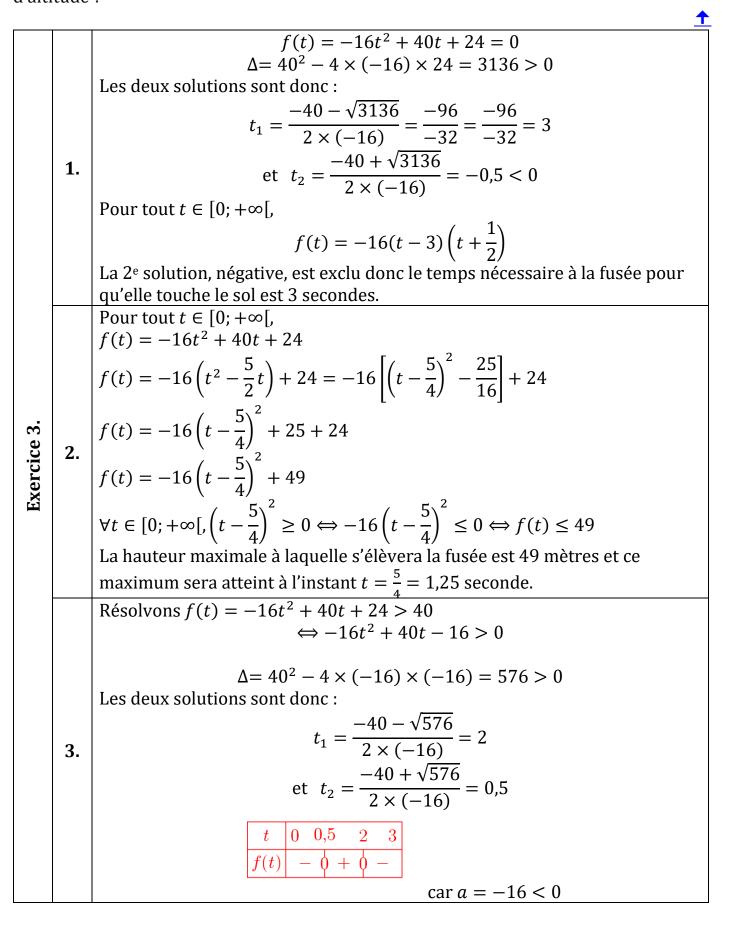
Correction de l'exercice 3.

On lance une fusée du haut d'un immeuble de 24 mètres. On note t le temps en secondes et f(t) la hauteur en mètres de la fusée en fonction du temps.

On a: $f(t) = -16t^2 + 40t + 24$ pour tout $t \in [0; +\infty[$

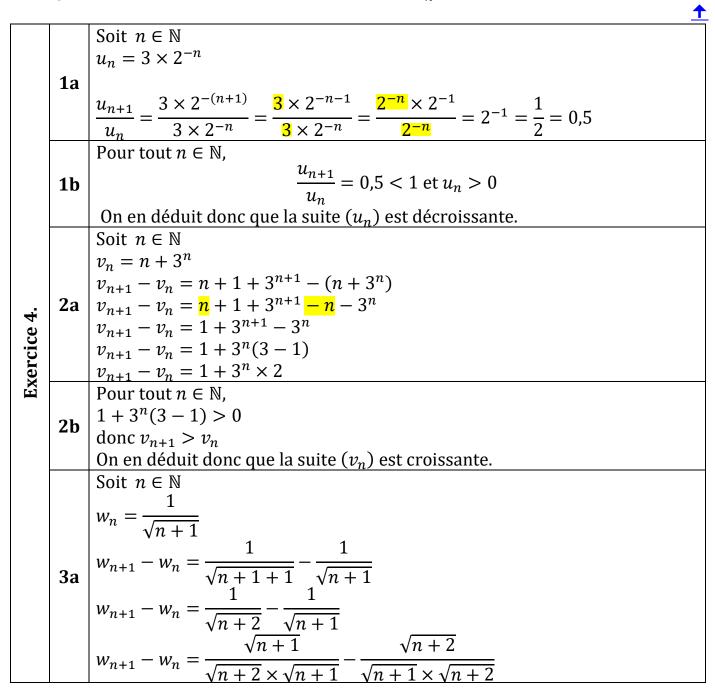
▶ 1. Pour tout $t \in [0; +\infty[$, écrire f(t) sous forme factorisée. Déterminer le temps nécessaire à la fusée pour qu'elle touche le sol.

▶ 3. Pendant combien de temps la fusée restera-t-elle au-dessus du plafond de 40 m d'altitude ?



Correction de l'exercice 4.

- ▶1. Soit la suite de terme général $u_n = 3 \times 2^{-n}$ pour tout $n \in \mathbb{N}$.
 - a) Déterminer $\frac{u_{n+1}}{u_n}$, pour tout $n \in \mathbb{N}$.
 - b) En déduire le sens de variation de la suite (u_n) .
- ▶2. Soit la suite de terme général $v_n = n + 3^n$ pour tout $n \in \mathbb{N}$.
 - a) Déterminer $v_{n+1} v_n$.
 - b) En déduire le sens de variation de la suite (v_n) .
- ▶ 3. Soit la suite de terme général $w_n = \frac{1}{\sqrt{n+1}}$ pour tout $n \in \mathbb{N}$.
 - a) Déterminer $w_{n+1} w_n$.
 - b) En déduire le sens de variation de la suite (w_n) .



$$w_{n+1} - w_n = \frac{\sqrt{n+1} - \sqrt{n+2}}{\sqrt{n+2} \times \sqrt{n+1}}$$

$$w_{n+1} - w_n = \frac{\left(\sqrt{n+1} - \sqrt{n+2}\right) \times \left(\sqrt{n+1} + \sqrt{n+2}\right)}{\sqrt{n+2} \times \sqrt{n+1} \times \left(\sqrt{n+1} + \sqrt{n+2}\right)}$$

$$w_{n+1} - w_n = \frac{\sqrt{n+1}^2 - \sqrt{n+2}^2}{\sqrt{n+2} \times \sqrt{n+1} \times \left(\sqrt{n+1} + \sqrt{n+2}\right)}$$

$$w_{n+1} - w_n = \frac{n+1 - (n+2)}{\sqrt{n+2} \times \sqrt{n+1} \times \left(\sqrt{n+1} + \sqrt{n+2}\right)}$$

$$w_{n+1} - w_n = \frac{n+1 - n - 2}{\sqrt{n+2} \times \sqrt{n+1} \times \left(\sqrt{n+1} + \sqrt{n+2}\right)}$$

$$w_{n+1} - w_n = \frac{-1}{\sqrt{n+2} \times \sqrt{n+1} \times \left(\sqrt{n+1} + \sqrt{n+2}\right)}$$
Pour tout $n \in \mathbb{N}$,
$$\sqrt{n+2} > 0$$
, $\sqrt{n+1} > 0$ et $\sqrt{n+1} + \sqrt{n+2} > 0$
puisque $-1 < 0$
donc $w_{n+1} - w_n < 0$
On en déduit donc que la suite (w_n) est décroissante.

Correction de l'exercice 5.

▶ 1. On considère la suite (u_n) définie par :

$$u_0 = 2$$
 et $u_{n+1} = u_n - 2(n+3) + 2$

- a) Déterminer les quatre premiers termes de la suite.
- b) Quel est le sens de variation de la suite (u_n) ? Démontrer votre réponse.
- ▶ 2. On considère la suite (v_n) définie par $v_1 = 2$ et $v_{n+1} = \frac{n \times v_n}{n+1}$
 - c) Déterminer les quatre premiers termes de la suite.
 - d) Déterminer $\frac{v_{n+1}}{v_n}$, pour tout $n \in \mathbb{N}^*$.

En déduire le sens de variation de la suite (v_n) .

_		
	1a	$u_0 = 2$ pour $n = 0$, $u_1 = u_0 - 2(0+3) + 2 = 2 - 6 + 2 = -2$ pour $n = 1$, $u_2 = u_1 - 2(1+3) + 2 = -2 - 8 + 2 = -8$ pour $n = 2$, $u_3 = u_2 - 2(2+3) + 2 = -8 - 10 + 2 = -16$
Exercice 5.	1b	Pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n - 2(n+3) + 2$ $u_{n+1} - u_n = -2n - 6 + 2 = -2n - 4$ $n \ge 0$ donc $-2n - 4 < 0$ On en déduit donc que la suite (u_n) est décroissante.
	2a	$v_1 = 2$

	pour $n = 1$, $v_2 = \frac{1 \times v_1}{1+1} = \frac{2}{2} = 1$
	pour $n = 2$, $v_3 = \frac{2 \times v_2}{2 \times 1} = \frac{2 \times 1}{2} = \frac{2}{2}$
	pour $n = 3$, $v_4 = \frac{3 \times v_3}{3+1} = \frac{3 \times \frac{2}{3}}{4} = \frac{1}{2}$ Soit $n \in \mathbb{N}^*$,
2b	Soit $n \in \mathbb{N}^*$, $\frac{v_{n+1}}{v_n} = \frac{\frac{n \times v_n}{n+1}}{v_n} = \frac{n \times v_n}{n+1} \times \frac{1}{v_n} = \frac{n}{n+1}$
2c	$\forall n \in \mathbb{N}^*, n \leq n+1$ $\operatorname{donc} \frac{n}{n+1} \leq 1$ On en déduit donc que la suite (v_n) est décroissante.
•	