

Préparation au contrôle Première Générale

Table des matières

Première Générale → Enoncés des exercices	2
Exercice 1	2
Exercice 2	2
Exercice 3	2
Exercice 4	3
Exercice 5	3
Première Générale → Corrigés des exercices	5
Exercice 1.	
Exercice 2.	
Exercice 3.	7
Exercice 4.	9
Exercice 5.	10

Première Générale → **Enoncés des exercices**

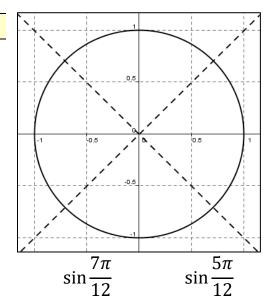
Exercice 1.

▶1. Résoudre dans $]-\pi;\pi]$ les équations suivantes :

a)
$$\sin x = -\frac{\sqrt{2}}{2}$$

b)
$$4\cos^2(x) - 3 = 0$$

Sachant que $\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$, donner la va-**▶**2. leur exacte de :



$$\cos\left(-\frac{\pi}{12}\right) \qquad \cos\frac{11\pi}{12}$$

$$\cos \frac{11\pi}{12}$$

$$\cos \frac{13\pi}{12}$$

▶1.Placer les angles sur le cercle trigonométrique

$$\frac{2\pi}{3}$$

$$\frac{-9\pi}{4}$$

▶2. Déterminez les valeurs suivantes :

$$\cos(\pi) =$$

$$\cos\left(\frac{5\pi}{6}\right) =$$

$$\sin\left(\frac{5\pi}{3}\right) =$$

$$\sin(2\pi) =$$

$$\sin\left(\frac{-\pi}{2}\right) =$$

$$\cos\left(\frac{-281\,\pi}{6}\right) =$$

▶ 3. Déterminez l'angle *x* tel que

$$\cos(x) = -\frac{1}{2} \text{ et } \sin(x) = \frac{\sqrt{3}}{2}$$

Exercice 3.

Soit f la fonction $x \mapsto -3x^2 + 2$ définie sur \mathbb{R} .

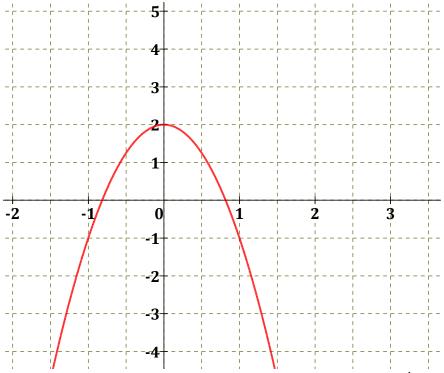
▶ 1. Démontrer que, pour tout nombre réel h,

$$f(1+h) - f(1) = -6h - 3h^2$$

▶ 2. En déduire le taux de variation de la fonction f entre 1 et 1 + h.

▶ 3. La fonction f est-elle dérivable en 1 ? Si oui, préciser f'(1).

 \blacktriangleright 4. Dans le repère ci-dessous, tracer la tangente à la courbe représentative de f au point d'abscisse 1.



- ▶5a) Déterminer l'équation de la droite qui passe par les points $E\left(-\frac{1}{2};2\right)$ et $F\left(-\frac{3}{2};-4\right)$.
- b) Démontrer que la fonction f est paire.
- c) La droite (*EF*) est-elle tangente à la courbe de *f* ? Si oui en quel point ?
- d) En déduire f'(-1).

Exercice 4.

Soit *g* la fonction $x \mapsto \frac{1}{2x-1}$ définie sur $\left[\frac{1}{2}; +\infty\right[$.

▶1. Démontrer que, pour tout nombre réel *h*,

$$g(2+h) - g(2) = \frac{-2h}{3(3+2h)}$$

- ▶ 2. En déduire le taux de variation de la fonction g entre 2 et 2 + h.
- ▶ 3. La fonction g est-elle dérivable en 2 ? Si oui, préciser g'(2).
- \blacktriangleright 4. Déterminer l'équation de la tangente à la courbe représentative de g au point d'abscisse 2.
- ▶ 5. La fonction g est-elle paire ? impaire ? ni l'un ni l'autre ?

Exercice 5.

Soit *h* la fonction $x \mapsto \sqrt{x^2 + 9}$ définie sur \mathbb{R} .

$$h(4+h) - h(4) = \frac{8h + h^2}{\sqrt{25 + 8h + h^2} + 5}$$

- ▶ 2. En déduire le taux de variation de la fonction h entre 4 et 4 + h.
- ▶ 3. La fonction h est-elle dérivable en 4 ? Si oui, préciser h'(4).

- ▶ 4. Déterminer l'équation de la tangente à la courbe représentative de *h* au point d'abscisse 4.
- ▶ 5. La fonction h est-elle paire ? impaire ? ni l'un ni l'autre ?
- ▶ 6a) Déterminer l'équation de la droite qui passe par les points A(6; -3) et B(1; 1).
- b) Cette droite (AB) est-elle tangente à la courbe de h ? Si oui en quel point ?
- c) En déduire h'(-4).

Première Générale — Corrigés des exercices

Exercice 1.

▶1. Résoudre dans $]-\pi;\pi]$ les équations suivantes :

a)
$$\sin x = -\frac{\sqrt{2}}{2}$$

b)
$$4\cos^2(x) - 3 = 0$$

Sachant que $\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$, donner la valeur exacte de : $\cos \left(-\frac{\pi}{12}\right) = \cos \frac{11\pi}{12} = \cos \frac{13\pi}{12} = \sin \frac{7\pi}{12} = \sin \frac{5\pi}{12}$ **▶**2.

$$\cos\left(-\frac{\pi}{12}\right)$$

$$\cos\frac{1}{12} = \frac{4}{11\pi}$$

$$\cos\frac{11\pi}{12}$$

$$\cos \frac{13\pi}{12}$$

$$\sin \frac{7\pi}{12}$$

$$\sin \frac{5\pi}{12}$$

1.

$$\sin x = -\frac{\sqrt{2}}{2} \operatorname{donc} x = -\frac{\pi}{4} \operatorname{ou} x = -\frac{3\pi}{4}$$

$$4 \cos^2(x) - 3 = 0$$

$$\cos^{2}(x) = \frac{3}{4}$$

$$\cos(x) = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2} \quad \text{ou } \cos(x) = -\frac{\sqrt{3}}{2}$$

donc
$$x = \frac{\pi}{6}$$
 ou $x = -\frac{\pi}{6}$ ou $x = \frac{5\pi}{6}$ ou $x = -\frac{5\pi}{6}$

Exercice 1.

2.

$$\cos\left(-\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\cos\left(\frac{11\pi}{12}\right) = -\cos\left(\frac{\pi}{12}\right) = -\frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\cos\left(\frac{13\pi}{12}\right) = -\cos\left(\frac{\pi}{12}\right) = -\frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\sin\left(\frac{7\pi}{12}\right) = \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\sin\left(\frac{5\pi}{12}\right) = \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$$

Exercice 2.

▶1.Placer les angles sur le cercle trigonométrique

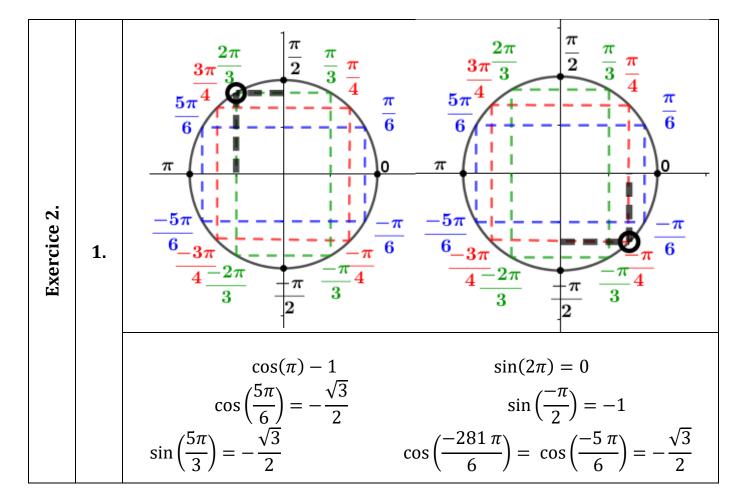
$$\frac{2\pi}{3}$$
 $\frac{-9\pi}{4}$

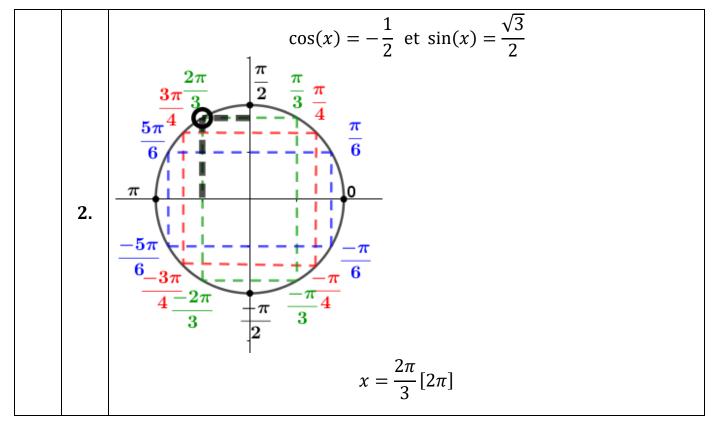
▶ 2. Déterminez les valeurs suivantes :

$$\cos(\pi) = \sin(2\pi) = \sin(\frac{5\pi}{6}) = \sin\left(\frac{-\pi}{2}\right) = \cos\left(\frac{-281 \,\pi}{6}\right) =$$

▶3. Déterminez l'angle *x* tel que

$$\cos(x) = -\frac{1}{2} \text{ et } \sin(x) = \frac{\sqrt{3}}{2}$$





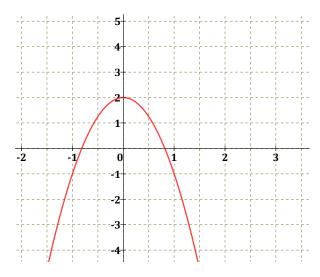
1

Exercice 3.

Soit f la fonction $x \mapsto -3x^2 + 2$ définie sur \mathbb{R} .

$$f(1+h) - f(1) = -6h - 3h^2$$

- ▶ 2. En déduire le taux de variation de la fonction f entre 1 et 1 + h.
- ▶ 3. La fonction f est-elle dérivable en 1 ? Si oui, préciser f'(1).
- \blacktriangleright 4. Dans le repère ci-dessous, tracer la tangente à la courbe représentative de f au point d'abscisse 1.



- ▶ 5a) Déterminer l'équation de la droite qui passe par les points $E\left(-\frac{1}{2};2\right)$ et $F\left(-\frac{3}{2};-4\right)$.
- b) Démontrer que la fonction f est paire.
- c) La droite (*EF*) est-elle tangente à la courbe de *f* ? Si oui en quel point ?
- d) En déduire f'(-1).

	1.	Pour tout nombre réel <i>h</i> ,
		$f(1+h) - f(1) = -3(1+h)^2 + 2 - (-1)$
		$= -3 - 6h - 3h^{2} + 3$ $f(1+h) - f(1) = -6h - 3h^{2}$
	2.	$\frac{f(1+h)-f(1)}{h} = \frac{-6h-3h^2}{h} = -6-3h$
		$\lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} -6 - 3h = -6$
	3.	$\lim_{h \to 0} \frac{11m}{h} = \lim_{h \to 0} -6 - 3h = -6$ $f \text{ est donc dérivable en 1 et } f'(1) = -6$
3.		
	4.	
		-2 -1 0 1 2
Exercice 3.		
Exe		
		·
	5.	L'équation de la droite qui passe par les points $E\left(-\frac{1}{2};2\right)$ et $F\left(-\frac{3}{2};-4\right)$
		a pour coefficient directeur :
		$a = \frac{\Delta y}{\Delta x} = \frac{2 - (-4)}{-\frac{1}{2} - (-\frac{3}{2})} = \frac{2 + 4}{-\frac{1}{2} + \frac{3}{2}} = \frac{2 + 4}{1} = 6$
		L'équation est donc $y = 6x + b$
		or $E \in (EF)$ donc $2 = 6 \times \left(-\frac{1}{2}\right) + b$
		$ 2 = -3 + b \\ b = 5 $
		L'équation de (EF) est $y = 6x + 5$
		$\forall x \in \mathbb{R}, f(-x) = -3 \times (-x)^2 + 2 = -3x^2 + 2 = f(x)$
		La fonction <i>f</i> est donc paire.
		La droite (EF) elle donc tangente à la courbe de f au point d'abscisse -1 car la courbe de f est symétrique par rapport à (Oy) puisque f est paire.

Exercice 4.

Soit *g* la fonction $x \mapsto \frac{1}{2x-1}$ définie sur $\left[\frac{1}{2}; +\infty\right[$.

$$g(2+h) - g(2) = \frac{-2h}{3(3+2h)}$$

- ▶ 2. En déduire le taux de variation de la fonction g entre 2 et 2 + h.
- ▶ 3. La fonction g est-elle dérivable en 2 ? Si oui, préciser g'(2).
- \blacktriangleright 4. Déterminer l'équation de la tangente à la courbe représentative de g au point d'abscisse 2.
- ▶ 5. La fonction g est-elle paire ? impaire ? ni l'un ni l'autre ?

		Pour tout nombre réel <i>h</i> ,
Exercice 3.	1.	$g(2+h) - g(2) = \frac{1}{2(2+h)-1} - \frac{1}{3} = \frac{1}{4+2h-1} - \frac{1}{3}$ $= \frac{1}{3+2h} - \frac{1}{3} = \frac{3-3-2h}{3(3+2h)}$ $g(2+h) - g(2) = \frac{-2h}{3(3+2h)}$ $g(2+h) - g(2) = \frac{-2h}{3(3+2h)} - 2h = 1 - 2$
	2.	$\frac{g(2+h) - g(2)}{h} = \frac{\frac{-2h}{3(3+2h)}}{h} = \frac{-2h}{3(3+2h)} \times \frac{1}{h} = \frac{-2}{3(3+2h)}$ $\lim_{h \to 0} \frac{g(2+h) - g(2)}{h} = \lim_{h \to 0} \frac{-2}{3(3+2h)} = -\frac{2}{9}$
	3.	$\lim_{h \to 0} \frac{g(2+h) - g(2)}{h} = \lim_{h \to 0} \frac{-2}{3(3+2h)} = -\frac{2}{9}$
		g est donc dérivable en 2 et $g'(2) = -\frac{2}{9}$
	4.	$g'(2) = -\frac{2}{9}$ $g(2) = \frac{1}{3}$ L'équation de la tangente est : $y = g'(2)(x - 2) + g(2)$ $y = -\frac{2}{9}(x - 2) + \frac{1}{3}$ 2
		$y = -\frac{2}{9}x + \frac{7}{9}$

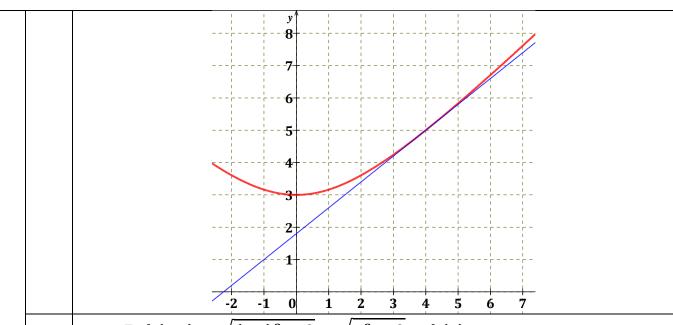
Exercice 5.

Soit *h* la fonction $x \mapsto \sqrt{x^2 + 9}$ définie sur \mathbb{R} .

$$h(4+h) - h(4) = \frac{8h + h^2}{\sqrt{25 + 8h + h^2} + 5}$$

- ▶ 2. En déduire le taux de variation de la fonction h entre 4 et 4 + h.
- ▶ 3. La fonction h est-elle dérivable en 4 ? Si oui, préciser h'(4).
- \blacktriangleright 4. Déterminer l'équation de la tangente à la courbe représentative de h au point d'abscisse 4.
- ▶ 5. La fonction h est-elle paire ? impaire ? ni l'un ni l'autre ?
- ▶ 6a) Déterminer l'équation de la droite qui passe par les points A(6; -3) et B(1; 1).
- b) Cette droite (AB) est-elle tangente à la courbe de h? Si oui en quel point?
- c) En déduire h'(-4).

	1	
		Pour tout nombre réel <i>h</i> ,
		$h(4+h) - h(4) = \sqrt{(4+h)^2 + 9} - 5$
		$=\sqrt{16+8h+h^2+9}-5$
		$= \sqrt{25 + 8h + h^2} - 5$
		$-\frac{(\sqrt{25+8h+h^2}-5)(\sqrt{25+8h+h^2}+5)}{(\sqrt{25+8h+h^2}+5)}$
	1.	$-\sqrt{25+8h+h_2^2}+5$
		$=\frac{\sqrt{25+8h+h^2+5}}{\sqrt{25+8h+h^2^2}-5^2}$
		$=\frac{\sqrt{25+8h+h^2+5}}{25+8h+h^2-25}$
		$= \frac{1}{\sqrt{25 + 8h + h^2} + 5}$
		$h(4+h) - h(4) = \frac{8h + h^2}{\sqrt{25 + 8h + h^2} + 5}$
e 3		
Exercice 3.		$\frac{h(4+h)-h(4)}{h} = \frac{\frac{8h+h^2}{\sqrt{25+8h+h^2}+5}}{h} = \frac{8h+h^2}{\sqrt{25+8h+h^2}+5} \times \frac{1}{h}$ $h(4+h)-h(4) = \frac{8h+h^2}{\sqrt{25+8h+h^2}+5} \times \frac{1}{h}$
	2.	$\left \frac{n(4+n)-n(4)}{h} \right = \frac{\sqrt{25+8h+h^2+5}}{h} = \frac{8h+h^2}{\sqrt{25+8h+h^2+5}} \times \frac{1}{h}$
	۷.	h $h(4+h)-h(4)$ $h(4+h)-h(4)$ $h(4+h)-h(4)$ $h(4+h)-h(4)$ $h(4+h)-h(4)$ $h(4+h)-h(4)$ $h(4+h)-h(4)$ $h(4+h)-h(4)$
		$\frac{h(4+h)-h(4)}{h} = \frac{8+h}{\sqrt{25+8h+h^2}+5}$
		$\lim_{h \to 0} \frac{h(4+h) - h(4)}{h} = \lim_{h \to 0} \frac{8+h}{\sqrt{25+8h+h^2} + 5} = \frac{8}{\sqrt{25} + 5} = \frac{8}{10} = 0.8$
	3.	$h \to 0$ $h \to 0$ $\sqrt{25 + 8h + h^2} + 5$ $\sqrt{25} + 5$ 10 $h = 0.8$
		h'(4) = 0.8 h(4) = 5
		L'équation de la tangente est :
	4.	y = h'(4)(x-4) + h(4)
		y = 0.8(x - 4) + 5
		y = 0.8x - 3.2 + 5
		y = 0.8x + 1.8



5. $\forall x \in \mathbb{R}, h(-x) = \sqrt{(-x)^2 + 9} = \sqrt{x^2 + 9} = h(x)$

La fonction *h* est donc paire.

L'équation de la droite qui passe par les points A(6; -3) et B(1; 1) a pour coefficient directeur :

$$a = \frac{\Delta y}{\Delta x} = \frac{-3 - 1}{6 - 1} = \frac{-4}{5} = -0.8$$

L'équation est donc y = -0.8 x + b

or
$$A \in (AB)$$
 donc $-3 = -0.8 \times 6 + b$
 $-3 = -4.8 + b$
 $b = -3 + 4.8 = 1.8$

L'équation de (AB) est y = -0.8x + 1.8

La droite (AB) elle donc tangente à la courbe de h au point d'abscisse -4 car la courbe de h est symétrique par rapport à (Oy) puisque h est paire.

J'en déduis que h'(-4) = -0.8, le coefficient directeur de la tangente à la courbe de h au point d'abscisse -4.

