Exercice n°1

Soit la fonction $f(x) = \frac{5x - 1}{3 - 4x}$ définie sur $\left] -\infty; \frac{3}{4} \right[$

- ▶ 1. Démontrer que la fonction f est monotone sur $\left]-\infty; \frac{3}{4}\right[$.
- \triangleright 2. Déterminer l'équation de la tangente à la courbe en -2.

Exercice n°2

Soit la fonction $g(x) = 5 + \frac{4}{x}$ définie sur $]-\infty; 0[\cup]0; +\infty[$

- \triangleright 1. Dresser, en justifiant, le tableau de variation de la fonction g.
- ▶ 2. Existe-t-il un point de la courbe de g qui ait pour tangente une droite parallèle à la droite d'équation $y = \frac{-x}{9}$?

Exercice n°3

Un fermier décide de réaliser un poulailler (de forme rectangulaire) le long du mur de sa maison. Pour construire ce poulailler, il dispose d'un grillage de 20 mètres. **Où doit-il placer les piquets A et B pour que l'aire du poulailler soit maximale ?**

Exercice n°4

Soit la fonction $f(x) = (x - 1)\sqrt{2x - 1}$ définie sur $\left[\frac{1}{2}; +\infty\right]$

- ▶ 1. Pour tout $x \in \left[\frac{1}{2}; +\infty\right[$, calculer f'(x) puis étudier le signe de f'(x).
- ightharpoonup 2. En déduire le tableau de variations de la fonction f.
- ▶3. Déterminer l'équation de la tangente à la courbe en 1.

Exercice n°5

Soit la fonction définie sur \mathbb{R} par $g(x) = x^3 - 3x^2 - 24x + 2$

- ▶1a) Pour tout $x \in \mathbb{R}$, calculer g'(x) puis étudier le signe de g'(x).
 - b) En déduire le tableau de variations de la fonction *g*.
- ▶ 2. Déterminer l'équation de la tangente à la courbe qui a pour coefficient directeur 21.

Exercice n°6

Soit la fonction définie sur \mathbb{R}^* par $h(x) = 2x + \frac{3}{x}$

- ▶ 1a) Pour tout $x \in \mathbb{R}^*$, calculer h'(x) puis étudier le signe de h'(x).
 - b) En déduire le tableau de variations de la fonction *h*.
- ▶ 2. Existe-t-il un point de la courbe de h qui ait une tangente une droite parallèle à la droite d'équation y = -x?