

Exponentielle Première Générale — Préparation du contrôle

Table des matières

Exponentielle	⊥
Première Générale → Préparation du contrôle	1
Première Générale → Préparation du contrôle	2
Enoncé des exercices	2
Exercice 1	
Exercice 2	2
Exercice 3.	2
Exercice 4.	2
Exercice 5	2
Première Générale → Préparation au contrôle	
Correction des exercices	3
Correction de l'exercice 1.	3
Correction de l'exercice 2.	5
Correction de l'exercice 3	6
Correction de l'exercice 4	6
Correction de l'exercice 5	7

Première Générale Préparation du contrôle Enoncé des exercices

Exercice 1.

- ▶ 1. Soit la fonction $f(x) = \frac{e^{-x}}{x}$ définie sur \mathbb{R}^*
 - a) Calculer f'(x) et étudier son signe.
 - b) En déduire les variations de la fonction f.
 - c) Déterminer l'équation de la tangente à la courbe de f au point d'abscisse 1.
- ▶2. Soit la fonction $g(x) = \frac{e^{2x} x}{x}$ définie sur \mathbb{R}^* .
 - a) Etablir, en justifiant, le tableau de variations de la fonction *g*.
 - b) Déterminer l'équation de la tangente à la courbe de *g* au point d'abscisse 1.
- ▶ 3. Soit la fonction $h(x) = e^x xe^x + 1$ définie sur \mathbb{R} . Déterminer l'extremum de la fonction h.

Exercice 2.

Lorsque l'on consomme de l'alcool, le taux d'alcool dans le sang varie en fonction du temps écoulé depuis l'absorption. Ce taux est appelé « alcoolémie » et est mesuré en grammes par litre (g/L). Après l'absorption de trois verres d'alcool, l'alcoolémie d'une personne donnée, en fonction du temps (exprimé en heures), est modélisée par la fonction définie sur \mathbb{R}^+ par f(t) = 2,5 t e^{-t} .

- ▶1. Donner la valeur de l'alcoolémie de la personne considérée au bout de 180 minutes.
- ▶2. Montrer que pour tout réel t de l'intervalle $[0; +\infty[, f'(t) = 2,5(1-t)e^{-t}]$.
- ▶3. Quelle est l'alcoolémie la plus élevée pour la personne considérée ? Justifier votre réponse.

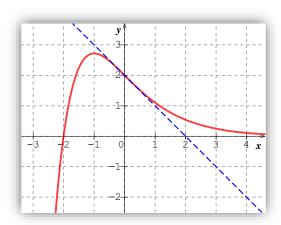
Exercice 3.

- ▶1. Simplifiez les expressions $A = \sqrt{(e^x + e^{-x})^2 (e^x e^{-x})^2}$ et $B = \frac{(e^{-2x})^3 \times e^2}{(e^{5x})^2 \times e^{-1}}$
- ▶2. Résoudre l'équation $(2e^x + 1)e^x = 3$

Exercice 4.

On donne une petite partie de la courbe représentative $\mathcal C$ d'une fonction f définie et dérivable sur $\mathbb R$, dans un repère orthonormé du plan.

- ▶ 1. Déterminer la valeur de f(0) et de f'(0), par lecture graphique.
- ▶ 2. La fonction f représentée est définie sur \mathbb{R} par $f(x) = (ax + b)e^{-x}$.
- a) Déterminer, en justifiant, les valeurs de a et b.
- b) Déterminer, en justifiant, le tableau de variation de la fonction f.



Exercice 5.

 $\forall n \in \mathbb{N}$, le nombre u_n est l'ordonnée du minimum de la fonction $f_n(x) = (x+n)e^x$ définie sur \mathbb{R} . Démontrer que la suite (u_n) est géométrique, on précisera sa raison.

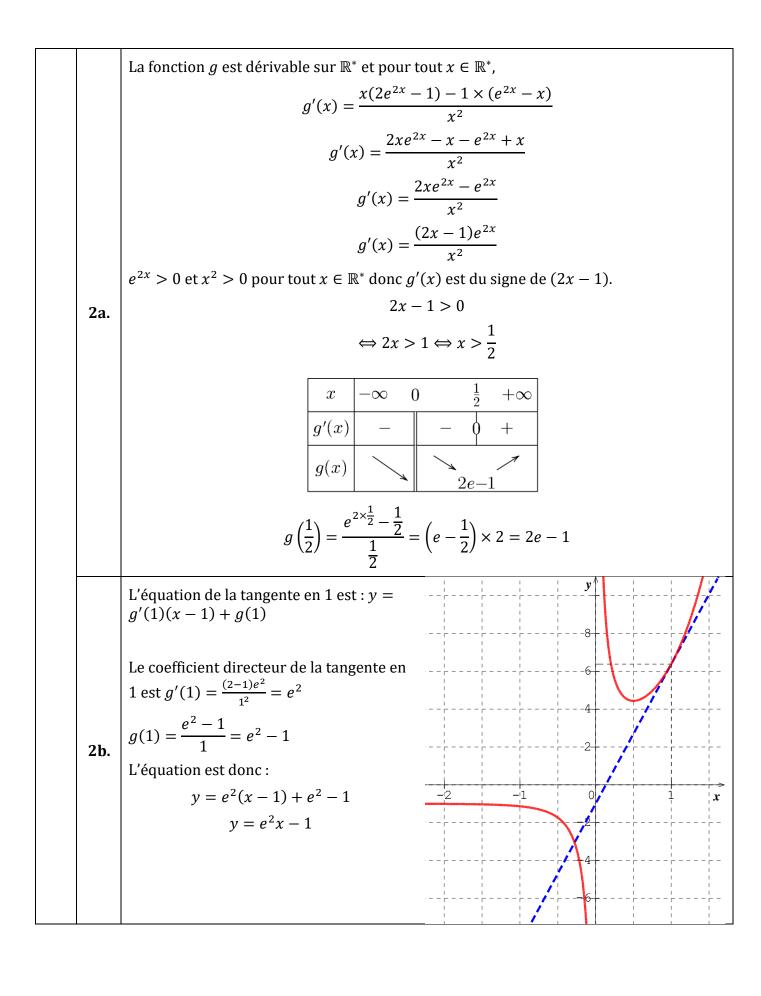
Première Générale → Préparation au contrôle

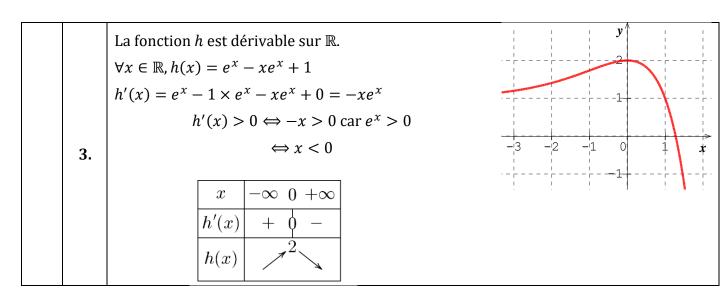
Correction des exercices

Correction de l'exercice 1.

- ▶1. Soit la fonction $f(x) = \frac{e^{-x}}{x}$ définie sur \mathbb{R}^*
 - a) Calculer f'(x) et étudier son signe.
 - b) En déduire les variations de la fonction f.
 - c) Déterminer l'équation de la tangente à la courbe de f au point d'abscisse 1.
- ▶2. Soit la fonction $g(x) = \frac{e^{2x} x}{x}$ définie sur \mathbb{R}^* .
 - a) Etablir, en justifiant, le tableau de variations de la fonction g.
 - b) Déterminer l'équation de la tangente à la courbe de g au point d'abscisse 1.
- ▶3. Soit la fonction $h(x) = e^x xe^x + 1$ définie sur \mathbb{R} . Déterminer l'extremum de la fonction h.

		<u> </u>
	1a.	La fonction f est dérivable sur \mathbb{R}^* et pour tout $x \in \mathbb{R}^*$,
		$f'(x) = \frac{-xe^{-x} - e^{-x}}{x^2} = \frac{(-x-1)e^{-x}}{x^2}$
		$x^2 - x^2$
	1b.	$e^{-x} > 0$ et $x^2 > 0$ pour tout $x \in \mathbb{R}^*$ donc $f'(x)$ est du signe de $(-x - 1)$.
		$-x-1 > 0 \Leftrightarrow -x > 1 \Leftrightarrow x < -1$
		$\begin{bmatrix} x & -\infty & -1 & 0 & +\infty \end{bmatrix}$
		f'(x) + 0 - -e
		f(x)
		f(-1) = -e
1.		
cice		L'équation de la tangente en 1 est de la forme : $y = f'(1)(x - 1) + f(1)$
Exercice 1.		Le coefficient directeur de 2+ la tangente en 1 est
 		
		$f'(1) = \frac{(-1-1)e^{-1}}{1^2}$
		$= -\frac{2}{e}$ $= -\frac{2}{e}$ $-3 -2 -1 0 1 2 3 4$
	1 -	$f(1) = \frac{e^{-1}}{1} = \frac{1}{e}$ $-3 -2 -1 0$ $1 2 3 4$
	1c.	$f(1) = \frac{1}{1} = \frac{1}{e}$
		L'équation est donc :
		$y = -\frac{2}{e}(x-1) + \frac{1}{e}$ -2
		$y = -\frac{2}{e}x + \frac{3}{e}$
		/ 1 4+





<u></u>

Correction de l'exercice 2.

Lorsque l'on consomme de l'alcool, le taux d'alcool dans le sang varie en fonction du temps écoulé depuis l'absorption. Ce taux est appelé « alcoolémie » et est mesuré en grammes par litre (g/L). Après l'absorption de trois verres d'alcool, l'alcoolémie d'une personne donnée, en fonction du temps (exprimé en heures), est modélisée par la fonction définie sur \mathbb{R}^+ par f(t) = 2,5 t e^{-t} .

- ▶1. Donner la valeur de l'alcoolémie de la personne considérée au bout de 180 minutes.
- ▶2. Montrer que pour tout réel t de l'intervalle $[0; +\infty[, f'(t) = 2,5(1-t)e^{-t}]$.
- ▶3. Quelle est l'alcoolémie la plus élevée pour la personne considérée ? Justifier votre réponse.

		<u> </u>
	1.	Au bout de 180 minutes, soit 3 heures, l'alcoolémie était de $f(3)=2.5\times 3\times e^{-3}\approx 0.373~{\rm g/L}$
Exercice 2.	2.	La fonction f est dérivable sur $[0; +\infty[$, $\forall t \in [0; +\infty[$ $f(t) = \underbrace{2,5}_{u \times v} t e^{-t} \underbrace{1}_{u \times v} t e^{-t} \underbrace{1}_{u \times v} t e^{-t} \underbrace{1}_{u \times v} \underbrace{1}_{u \times $
	3.	$f'(t) > 0 \Leftrightarrow 2.5(1-t)e^{-t} > 0$ $\Leftrightarrow 1-t > 0 \text{ car } 2.5 > 0 \text{ et } e^{-t} > 0$ $\Leftrightarrow 1 > t$ L'alcoolémie la plus élevée est atteinte pour $t=1$ heure et elle s'élève à $f(1) = 2.5 \times 1 \times e^{-1} = \frac{2.5}{e} \approx 0.92 \text{ g/L}$

- ▶1. Simplifiez les expressions $A = \sqrt{(e^x + e^{-x})^2 (e^x e^{-x})^2}$ et $B = \frac{(e^{-2x})^3 \times e^2}{(e^{5x})^2 \times e^{-1}}$
- ▶2. Résoudre l'équation $(2e^x + 1)e^x = 3$

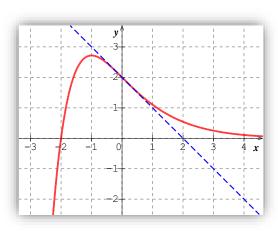
1

Exercice 3.	1.	$A = \sqrt{(e^{x} + e^{-x})^{2} - (e^{x} - e^{-x})^{2}}$ $A = \sqrt{e^{2x} + 2e^{x-x} + e^{-2x} - (e^{2x} - 2e^{x-x} + e^{-2x})}$ $A = \sqrt{e^{2x} + 2e^{0} + e^{-2x} - e^{2x} + 2e^{0} - e^{-2x}}$ $A = \sqrt{2 + 2} = \sqrt{4} = 2$ $B = \frac{(e^{-2x})^{3} \times e^{2}}{(e^{5x})^{2} \times e^{-1}}$ $B = \frac{e^{-6x} \times e^{2}}{e^{10x} \times e^{-1}}$ $B = \frac{e^{-6x+2}}{e^{10x-1}}$ $B = e^{-6x+2-(10x-1)}$ $B = e^{-6x+2-10x+1}$ $B = e^{-16x+3}$
	2.	$(2e^{x}+1)e^{x}=3 \Leftrightarrow 2e^{2x}+e^{x}+3=0$ Posons $X=e^{x}$, l'équation devient $2X^{2}+X-3=0$ $\Delta=1-4\times2\times(-3)=25>0$ Il y a donc deux solutions: $X_{1}=\frac{-1-5}{4}=\frac{-6}{4}=-1,5 \text{ ou } X_{2}=\frac{-1+5}{4}=\frac{4}{4}=1$ Résolvons $e^{x}=-1,5 \text{ Pas de solution}$ $e^{x}=1=e^{0} \text{ Il y a une solution } x=0$

Correction de l'exercice 4.

On donne une petite partie de la courbe représentative \mathcal{C} d'une fonction f définie et dérivable sur \mathbb{R} , dans un repère orthonormé du plan.

- ▶ 1. Déterminer la valeur de f(0) et de f'(0), par lecture graphique.
- ▶ 2. La fonction f représentée est définie sur \mathbb{R} par $f(x) = (ax + b)e^{-x}$.
- a) Déterminer, en justifiant, les valeurs de a et b.
- b) Déterminer, en justifiant, le tableau de variation de la fonction f.



	1.	Par lecture graphique $f(0) = 2$ car la courbe passe par le point de coordonnées $(0; 2)$
		et $f'(0) = -1$ car le coefficient directeur de la tangente à la courbe en 0 vaut
		$\frac{\Delta y}{\Delta x} = \frac{-1}{1} = -1$
		$f(x) = (ax + b)e^{-x}$
		$f(0) = 2 = (a \times 0 + b)e^{-0} = b$
	2a.	J'en déduis que $b = 2$ et donc $f(x) = (ax + 2)e^{-x}$
		f est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$
		$f(x) = \underbrace{(ax+2) e^{-x}}_{u \times v}$
		$f'(x) = a e^{-x} + (ax + 2) (-e^{-x})$
		$f'(x) = \underbrace{a e^{-x}}_{u' \times v} + \underbrace{(ax+2)(-e^{-x})}_{u \times v'}$
		$f'(x) = ae^{-x} - (ax + 2)e^{-x}$
,		$f'(x) = (a - ax - 2)e^{-x}$
ce 4		$f'(0) = -1 = (a-2)e^{-0}$
rcic		$a-2=-1 \Leftrightarrow a=2-1=1$
Exercice 4.		$\operatorname{donc} f(x) = (x+2)e^{-x}$
		$\forall x \in \mathbb{R}, f'(x) = 1 \times e^{-x} + (x+2)(-e^{-x})$
		$f'(x) = e^{-x}[1 - (x+2)]$
		$f'(x) = e^{-x}(1 - x - 2)$
		$f'(x) = e^{-x}(-1-x)$
		$f'(x) > 0 \Leftrightarrow e^{-x}(-1 - x) > 0$
	2b.	$\Leftrightarrow -1 - x > 0 \text{ car } e^{-x} > 0$
		$\Leftrightarrow -1 > x$
		$x -\infty -1 +\infty$
		f'(x) + 0 -
		f(x)

Correction de l'exercice 5. $\forall n \in \mathbb{N}$, le nombre u_n est l'ordonnée du minimum de la fonction $f_n(x) = (x+n)e^x$ définie sur \mathbb{R} . Démontrer que la suite (u_n) est géométrique, on précisera sa raison.

Soit $n \in \mathbb{N}$, la fonction f_n est dérivable sur \mathbb{R}

$$\forall x \in \mathbb{R}, f_n'(x) = 1 \times e^x + (x+n)e^x$$

$$f_n'(x) = (1+x+n)e^x$$

$$f'_n(x) > 0 \iff (1 + x + n)e^x > 0$$

$$\Leftrightarrow 1 + x + n > 0 \text{ car } e^x > 0$$

$$\Leftrightarrow x > -n - 1$$

x	$-\infty$ $-n-1$ $+\infty$
$f_n'(x)$	- 0 +
$f_n(x)$	$\frac{-1}{e^{n+1}}$

$$f_n(-n-1) = (-n-1+n)e^{-n-1} = -e^{-n-1} = \frac{-1}{e^{n+1}}$$

On en déduit que $\forall n \in \mathbb{N}$, $u_n = \frac{-1}{e^{n+1}}$.

Démontrons que cette suite est géométrique :

Soit $n \in \mathbb{N}$,

$$u_{n+1} = \frac{-1}{e^{n+1+1}} = \frac{-1}{e^{n+1} \times e^1}$$

$$u_{n+1} = \frac{1}{e} \times \frac{-1}{e^{n+1}} = \frac{1}{e} \times u_n$$

La suite est donc géométrique de raison $\frac{1}{e}$.