

Mardi 21 novembre 2023 1^{re} STMG → Contrôle n° 2

Table des matières

Enoncé du suje	et A		2
Exercice 1.	(4 points)		2
Exercice 2.	(8 points)		2
Exercice 3.	(8 points)		2
Enoncé du suje	et B		3
Exercice 1.	(4 points)		3
Exercice 2.	(8 points)		3
Exercice 3.	(8 points)		3
Correction du S			
Correction de l	'exercice 1.	(4 points)	4
Correction de l	'exercice 2.	(8 points)	4
Correction de l	'exercice 3.	(8 points)	5
Correction du S	Sujet B		6
Correction de l	'exercice 1.	(4 points)	6
Correction de l	'exercice 2.	(8 points)	6
		(8 points)	

1^{re} STMG → Contrôle n° 2 Enoncé du sujet A

Exercice 1. (4 points)

Taux d'évolution	Coefficient multiplicateur
+10%	
-20%	
+1,2%	
-2%	
	1,15
	0,96
	0,7
	1,002

Exercice 2. (8 points)

En 2023, une jeune diplômée est embauchée par une entreprise. Cette dernière lui propose un salaire mensuel net de $1750 \in$ avec une augmentation de 2% chaque année. Pour tout entier $n \in \mathbb{N}$, on note u_n le salaire mensuel proposé par l'entreprise A pour l'année « 2023+n », ainsi $u_0=1750$.

- ▶ 1. Calculer u_1 et u_2 . Interpréter les résultats.
- ▶2a) Quel coefficient multiplicatif est associé à une hausse de 2%?
 - b) Quelle est la nature de la suite (u_n) ? On précisera ses paramètres.
 - c) A ce rythme d'évolution, quel sera son salaire mensuel dans 14 ans?
- ▶ 3. A l'aide de votre calculatrice, déterminer au bout de combien d'années le salaire mensuel aura dépassé 2 000 €.

Exercice 3. (8 points)

La population d'une ville augmente chaque année de 340 habitants. En 2020, la population était de 12 000 habitants. Pour n entier naturel, on appelle v_n la population de l'année 2020 + n.

- ▶ 1. Déterminer v_0 et v_1 . Interpréter les résultats.
- ▶ 2a) Quelle est la nature de la suite (v_n) ?
 - b) Selon ce modèle, quelle sera la population en 2030?
- ▶ 3. À partir de quelle année la population dépassera-t-elle 20 000 habitants?

1^{re} STMG → Contrôle n° 2 Enoncé du sujet B

Exercice 1. (4 points)

Coefficient multiplicateur
1,25
0,92
0,8
1,004

Exercice 2. (8 points)

En 2023, une jeune diplômée est embauchée par une entreprise. Cette dernière lui propose un salaire mensuel net de $1\,650 \in$ avec une augmentation de 3% chaque année. Pour tout entier $n \in \mathbb{N}$, on note u_n le salaire mensuel proposé par l'entreprise A pour l'année « 2023+n », ainsi $u_0=1650$.

- ▶ 1. Calculer u_1 et u_2 . Interpréter les résultats.
- ▶ 2a) Quel coefficient multiplicatif est associé à une hausse de 3%?
 - b) Quelle est la nature de la suite (u_n) ? On précisera ses paramètres.
 - c) A ce rythme d'évolution, quel sera son salaire mensuel dans 12 ans?
- ▶ 3. A l'aide de votre calculatrice, déterminer au bout de combien d'années le salaire mensuel aura dépassé 2 500 €.

Exercice 3. (8 points)

La population d'une ville augmente chaque année de 430 habitants. En 2020, la population était de 11 000 habitants. Pour n entier naturel, on appelle v_n la population de l'année 2020+n.

- ightharpoonup 1. Déterminer v_0 et v_1 . Interpréter les résultats.
- ▶ 2a) Quelle est la nature de la suite (v_n) ?
 - b) Selon ce modèle, quelle sera la population en 2035 ?
- ▶ 3. À partir de quelle année la population dépassera-t-elle 20 000 habitants ?

†

CORRECTION du contrôle n° 2 Correction du Sujet A

Correction de l'exercice 1. (4 points)

Taux d'évolution	% Départ → % Arrivée	Coefficient multiplicateur
+10%	100% → 110%	1, 1
-20%	100% → 80%	0,8
+1,2%	100% → 101,2%	1,012
-2%	100% → 98%	0, 98
+15%	100% → 115%	1,15
-4 %	100% → 96%	0,96
-30%	100% → 70%	0,7
+0.2%	100% → 100,2%	1,002

1

Correction de l'exercice 2. (8 points)

En 2023, une jeune diplômée est embauchée par une entreprise. Cette dernière lui propose un salaire mensuel net de $1750 \in$ avec une augmentation de 2% chaque année. Pour tout entier $n \in \mathbb{N}$, on note u_n le salaire mensuel proposé par l'entreprise A pour l'année « 2023+n », ainsi $u_0=1750$.

- ▶ 1. Calculer u_1 et u_2 . Interpréter les résultats.
- ▶2a) Quel coefficient multiplicatif est associé à une hausse de 2%?
 - b) Quelle est la nature de la suite (u_n) ? On précisera ses paramètres.
 - c) A ce rythme d'évolution, quel sera son salaire mensuel dans 14 ans?
- ▶ 3. A l'aide de votre calculatrice, déterminer au bout de combien d'années le salaire mensuel aura dépassé 2 000 €.

		<u></u>
Exercice 2.	1.	2% de 1750 euros représente $\frac{2}{100} \times 1750 = 35$ euros donc $u_1 = 1750 + 35 = 1785 = 1750 \times 1,02$ 1785 euros sera le salaire de la jeune fille en 2024. $u_2 = 1785 + 1785 \times \frac{2}{100} = 1820,7 = 1785 \times 1,02$ 1820,7 euros sera le salaire de la jeune fille en 2025.
	2a.	Une hausse de 2% correspond à une multiplication par 1,02.
	2b.	La suite (u_n) est une suite géométrique de raison 1,02 et de $1^{\rm er}$ terme $u_0=1750$.
	2c.	Dans 14 ans, le salaire sera de : $u_{14} = 1750 \times 1,02^{14} \approx 2309,09$

	3.	 0 1750 1 1785.0 2 1820.7 3 1857.114 4 1894.25628 5 1932.1414056 6 1970.784233712 7 2010.1999183862401 Le salaire mensuel dépassera 2 000 € au bout de 7 ans, soit en 2030.
--	----	--

1

Correction de l'exercice 3. (8 points)

La population d'une ville augmente chaque année de 340 habitants. En 2020, la population était de 12 000 habitants. Pour n entier naturel, on appelle v_n la population de l'année 2020+n.

- lacktriangle 1. Déterminer v_0 et v_1 . Interpréter les résultats.
- ▶ 2a) Quelle est la nature de la suite (v_n) ?
 - b) Selon ce modèle, quelle sera la population en 2030?
- ▶ 3. À partir de quelle année la population dépassera-t-elle 20 000 habitants?

		<u> </u>
	1.	$v_0=12\ 000$ $v_1=12\ 000+340=12\ 340$ $v_0\ {\rm et}\ v_1\ {\rm repr\'esentent}\ {\rm le}\ {\rm nombre}\ {\rm d'habitants}\ {\rm dans}\ {\rm cette}\ {\rm ville}\ {\rm en}\ 2020\ {\rm et}\ {\rm en}\ 2021.$
	2a.	La suite (v_n) est arithmétique de raison 340 et de $1^{\rm er}$ terme $v_0=12000$.
ice 3.	2b.	2030 correspond à 2020 + 10 donc à u_{10} : $u_{10} = 12\ 000 + 340 \times 10 = 15\ 400$ En 2030, il y aura 15 400 habitants.
Exercice 3	3.	Au bout de n années, la population sera de : $12\ 000 + 340\ n > 20\ 000$ $12\ 000 + 340\ n > 20\ 000 - 12\ 000$ $340\ n > 8\ 000$ $340 \times n > 8\ 000$ $n > \frac{8\ 000}{340}$ $n > 23,5$ A ce rythme-là, il faudra 24 années pour que la population dépasse 20\ 000 habitants.

CORRECTION du contrôle n° 2 Correction du Sujet B

Correction de l'exercice 1. (4 points)

Taux d'évolution	% Départ → % Arrivée	Coefficient multiplicateur
+20%	100% → 120%	1, 2
-10%	100% → 90%	0,9
+1,4%	$100\% \rightarrow 101,4\%$	1,014
-3%	100% → 97%	0,97
+25%	100% → 125%	1,25
-8%	100% → 92%	0,92
-20 %	100% → 80%	0,8
+0.4%	100% → 100,4%	1,004

1

Correction de l'exercice 2. (8 points)

En 2023, une jeune diplômée est embauchée par une entreprise. Cette dernière lui propose un salaire mensuel net de $1\,650 \in$ avec une augmentation de 3% chaque année. Pour tout entier $n \in \mathbb{N}$, on note u_n le salaire mensuel proposé par l'entreprise A pour l'année « 2023+n », ainsi $u_0=1650$.

- ▶ 1. Calculer u_1 et u_2 . Interpréter les résultats.
- ▶ 2a) Quel coefficient multiplicatif est associé à une hausse de 3%?
 - b) Quelle est la nature de la suite (u_n) ? On précisera ses paramètres.
 - c) A ce rythme d'évolution, quel sera son salaire mensuel dans 12 ans?
- ▶ 3. A l'aide de votre calculatrice, déterminer au bout de combien d'années le salaire mensuel aura dépassé 2 500 €.

		↑ · · · · · · · · · · · · · · · · · · ·
Exercice 2.	1.	3% de 1650 euros représente $\frac{3}{100} \times 1650 = 49,5$ euros donc $u_1 = 1650 + 49,5 = 1699,5 = 1650 \times 1,03$ 1699,5 euros sera le salaire de la jeune fille en 2024. $u_2 = 1699,5 + 1699,5 \times \frac{3}{100} = 1750,485 = 1699,5 \times 1,03$ 1750,49 euros sera le salaire de la jeune fille en 2025.
	2a.	Une hausse de 3% correspond à une multiplication par 1,03.
	2b.	La suite (u_n) est une suite géométrique de raison 1,03 et de $1^{\rm er}$ terme $u_0=1650$.
	2c.	Dans 12 ans, le salaire sera de : $u_{12} = 1650 \times 1,03^{12} \approx 2352,51$

3	0 1650 1 1699.5 2 1750.48500000000001 3 1802.9995500000002 4 1857.0895365000003 5 1912.8022225950003 6 1970.1862892728504 7 2029.291877951036 Le salaire mensuel dépassera 2 500	8 2090.1706342895673 9 2152.8757533182543 10 2217.462025917802 11 2283.985886695336 12 2352.505463296196 13 2423.080627195082 14 2495.773046010934 15 2570.6462373912623 € au hout de 15 ans soit en 2038
	Le salaire mensuel dépassera 2 500	€ au bout de 15 ans, soit en 2038.

Correction de l'exercice 3. (8 points)

La population d'une ville augmente chaque année de 430 habitants. En 2020, la population était de 11 000 habitants. Pour n entier naturel, on appelle v_n la population de l'année 2020+n.

- lacktriangle 1. Déterminer v_0 et v_1 . Interpréter les résultats.
- ▶ 2a) Quelle est la nature de la suite (v_n) ?
 - b) Selon ce modèle, quelle sera la population en 2035?
- ▶ 3. À partir de quelle année la population dépassera-t-elle 20 000 habitants?

		<u>1</u>
	1.	$v_0=11\ 000$ $v_1=11\ 000+430=11\ 430$ $v_0\ {\rm et}\ v_1\ {\rm repr\'esentent}\ {\rm le}\ {\rm nombre}\ {\rm d'habitants}\ {\rm dans}\ {\rm cette}\ {\rm ville}\ {\rm en}\ 2020\ {\rm et}\ {\rm en}\ 2021.$
	2a.	La suite (v_n) est arithmétique de raison 430 et de $1^{\rm er}$ terme $v_0=11~000$.
ice 3.	2b.	2035 correspond à 2020 + 15 donc à u_{15} : $u_{15} = 11\ 000 + 430 \times 15 = 17\ 450$ En 2035, il y aura 17 450 habitants.
Exercice	3.	Au bout de n années, la population sera de :