

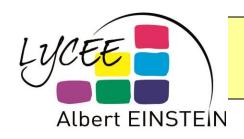
Blaise Pascal (1623 - 1662)

Mathématicien, physicien, philosophe, moraliste et théologien français, il publie un traité de géométrie projective à seize ans ; ensuite il développe, en 1654, une méthode de résolution du « problème des partis » qui, donne naissance au cours du XVIIIe siècle au calcul des probabilités.

I. Croisement de deux variables

Dans une population E, on étudie deux caractères A et B. Card(A) le nombre d'individus ayant le caractère A $A \cap B$ regroupe les individus ayant les caractères A et B.

	A	$\overline{m{A}}$	TOTAL
\boldsymbol{B}	$Card(A \cap B)$	$\operatorname{Card}(\bar{A} \cap B)$	Card(B)
$\overline{oldsymbol{B}}$	$Card(A \cap \overline{B})$	$\operatorname{Card}(\bar{A} \cap \bar{B})$	$Card(ar{B})$
TOTAL	Card(A)	$\operatorname{Card}(ar{A})$	Card(E)



$$f(A) = \frac{\operatorname{Card}(A)}{\operatorname{Card}(E)}$$

 $f(A) = \frac{\operatorname{Card}(A)}{\operatorname{Card}(E)}$ est la fréquence de A parmi la population E.

Une **fréquence conditionnelle** est une fréquence calculée par rapport à une sous-population.

Par exemple, $f_A(B)$ représente la fréquence de B mais par rapport à la sous-population que représente $A: f_A(B) = \frac{\operatorname{Card}(A \cap B)}{\operatorname{Card}(A)}$

 $f_{\bar{B}}(\bar{A})$ représente la fréquence de \bar{A} mais par rapport à la sous-population que représente $\bar{B}: f_{\bar{B}}(\bar{A}) = \frac{\operatorname{Card}(\bar{A} \cap \bar{B})}{\operatorname{Card}(\bar{B})}$

Exemple : Le tableau ci-dessous donne la répartition des salariés d'une entreprise :

	Ouvriers	Employés	Cadres	TOTAL
Temps partiel	24	26	7	57
Temps complet	168	39	21	228
TOTAL	192	65	28	285

On note O les ouvriers, E les employés et Ca les cadres, P le temps partiel et C le temps complet.

Calculez $f_P(O)$, $f_C(Ca)$, $f_E(P)$ et $f_O(C)$.

Quelle est la fréquence des temps complets?

Parmi les cadres, quelle est la fréquence des temps complets?

II. Probabilités conditionnelles

Dans une population E, on étudie au moins deux caractères A et B.

Card(A) le nombre d'individus ayant le caractère A

	A	$\overline{m{A}}$	TOTAL
В	$Card(A \cap B)$	$\operatorname{Card}(\bar{A} \cap B)$	Card(B)
\overline{B}	$Card(A \cap \overline{B})$	$\operatorname{Card}(\bar{A} \cap \bar{B})$	$\operatorname{Card}(ar{B})$
TOTAL	Card(A)	$\operatorname{Card}(ar{A})$	Card(E)

Définition:

A et B sont deux événements

La probabilité de l'événement A est $P(A) = \frac{Card(A)}{Card(E)}$

Si $P(A) \neq 0$,

la probabilité de l'événement B sachant A, notée $P_A(B)$, est :

$$P_A(B) = \frac{\operatorname{Card}(A \cap B)}{\operatorname{Card}(A)}$$

Exemple:

Lancé en mars 1990 lors de la *Conférence mondiale sur l'éducation*, le mouvement de l'*Éducation Pour Tous (EPT*) vise à donner une éducation de base et de qualité à tous les enfants, jeunes et adultes dans le monde.

Afin d'évaluer l'évolution de la situation, l'Institut de Statistique de l'UNESCO publie régulièrement un Rapport mondial de suivi de l'*EPT*.

Les données du Rapport 2016 ont permis de dresser le tableau ci-dessous :

Enfants non scolarisés selon les groupes de pays par niveau de revenu, en million, à 0,1 million près.

	Filles	Garçons	Total
Pays à faible revenu	35,5	30,2	65,7
Pays à revenu intermédiaire de la tranche inférieure	77,0	77,9	154,9
Pays à revenu intermédiaire de la tranche supérieure	16,5	19,9	36,4
Pays à revenu élevé	2,6	3,4	6,0
Monde	131,7	131,3	263,0

(Source: UIS Fact Sheet No. 48)

- ▶ 1. On choisit au hasard un enfant non scolarisé dans le monde en 2016. On considère les événements suivants : F : «L'enfant est une fille » E : «L'enfant vit dans un pays à faible revenu » <math>R : «L'enfant vit dans un pays à revenu élevé » a. Déterminer P(F) et P(E).
 - **b.** Définir par une phrase l'événement \overline{E} et calculer $P(\overline{E})$.
 - **c.** Définir par une phrase l'événement $F \cap E$ et sa probabilité.
 - **d.** Déterminer $P_R(F)$. Interpréter le résultat dans le contexte de l'exercice.
- ▶ 2. On choisit au hasard une fille non scolarisée dans le monde en 2016. Calculer la probabilité qu'elle vive dans un pays à revenu élevé.